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Abstract

Earthquakes are one of the most destructive natural disasters harming life and the infrastructure of cities. After an earthquake,
functioning communication and computational capacity are crucial for rescue teams and healthcare of victims. Therefore, an
earthquake can be investigated for dynamic capacity enhancement in which additional resources are deployed since the surviving
portion of the infrastructure may not meet the demand of the users. In this study, we propose a new computation paradigm, air
computing, which is the air vehicle assisted next generation edge computing through different air platforms, in order to enhance the
capacity of the areas affected by an earthquake. To this end, we put forward a novel paradigm that presents a dynamic, responsive,
and high-resolution computation environment by explaining its corresponding components, air layers, and essential advantages.
Moreover, we focus on the unmanned aerial vehicle (UAV) deployment problem and apply three different methods including
the emergency method, the load balancing method, and the location selection index (LSI) method in which we take the delay
requirements of applications into account. To test and compare their performance in terms of the task success rate, we developed
an earthquake scenario in which three towns are affected with different severity. The experimental results showed that each method
can be beneficial considering the circumstances, and goal of the rescue.
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1. Introduction

On February 6, 2023, two powerful earthquakes with mag-
nitude 7.8 and 7.5 hit south and central Turkey (Guo et al.
(2023)). They caused widespread damage in the region regard-
ing human lives and infrastructure as the earthquake epicenter
was close to crowded cities including Gaziantep and Kahra-
manmaras (W.H.O. (2023)). Since the damage was so heavy,
more than 140000 people from 94 countries joined the cor-
responding rescue efforts after Turkey’s call for international
help. Currently, the confirmed death toll is above 50000 people
(USNews (2023)).

One of the most important problems in the affected region
was the deprivation of communication. Since most of the in-
frastructure had collapsed, computers, base stations and com-
munication links could not serve properly to people including
the rescue teams, media, and earthquake victims who desper-
ately needed to organize properly. Therefore, this disaster has
shown once more that a dynamic capacity enhancement scheme
for the continuity of communication and computation services
regarding extraordinary events must be considered.

To meet the dynamic requirements of the next-generation
computer networks and different application types that have di-
verse service level agreements (SLA), vertical networking op-
portunities are recently used through low altitude platforms
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(LAP), high altitude platforms (HAP), and low earth orbit
(LEO) satellites (Guo et al. (2021); Liu et al. (2018); Baltaci
et al. (2021)). Each of these air platforms can provide differ-
ent opportunities in terms of latency, data rate, computational
capability, coverage, and mobility to the corresponding appli-
cations using the benefits of 3D networking. However, the joint
operation of those air platforms in a dynamic environment to
meet different requirements have not been properly applied and
therefore still be investigated.

Considering the task offloading paradigms such as fog and
edge computing, air vehicles are also used for enhancing the
computational capacity. Currently, the most popular implemen-
tation of this approach is the deployment of unmanned aerial
vehicles (UAVs) as UAV-assisted mobile edge computing ( Li
et al. (2018)). However, even though other air vehicles includ-
ing airplanes, balloons, and low earth orbits (LEOs) can also
be used for this purpose, they are deployed as standalone units.
Since the collaborative utilization of those air units can open
new horizons for efficient resource allocation, task offloading,
and content caching, we believe that edge computing would
evolve into this 3D paradigm. To this end, we consider the or-
ganization and execution of these air platforms regarding the
computational needs of the applications as a new computation
paradigm. Thus, we propose the name of air computing consid-
ering air vehicle assisted next generation edge computing. The
architecture of air computing is depicted in Figure 1.

The locations where the existing infrastructure would be in-
sufficient for the particular application requirements can use air
computing for task offloading, content caching, and resource al-
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Figure 1: Air Computing Architecture.

location. Hence, there are many advantages that air computing
can provide using different air vehicles for several real-world
scenarios including remote health, real-time video, augmented
reality, outdoor activities, and natural disasters (Wang et al.
(2018); Zeng et al. (2016)). Especially, this practice is crucial
for an area that has faced a disaster such as an earthquake.

In this study, we focus on the dynamic capacity enhancement
using UAVs for the computational needs of applications that
may not be executed satisfactorily because of the overloaded
terrestrial servers in the disaster area. The cause of the over-
loading can be a result of either the destruction of the existing
terrestrial servers or the increasing number of tasks in the area
due to the panic induced by the disaster, computational require-
ments, and increased need for communication. Thus, the orga-
nization and deployment policies of UAVs are crucial to provide
the required quality of service (QoS).

We introduce three different methods for the deployment of
UAVs that can be used in the case of a disaster. To this end, we
present a simulation for an earthquake scenario that affects three
towns differently. In the simulation, there are several events that
alter the existing infrastructure, interarrival times of tasks, and
number of users. Thus, we compare the methods based on their
reaction to those events by considering the success rate of user
applications which may have different SLA requirements. Our
main contributions in this study can be summarized as follows:

• We propose a new paradigm called air computing, which
is the next generation edge computing through organized
air vehicles such as UAVs, airplanes, and LEOs.

• We focus on the problem of UAV deployment under the
management of a HAP vehicle for enhancing the compu-
tational capabilities in the case of a disaster, which is not
thoroughly investigated in the literature.

• We show how different UAV deployment methods behave
in the case of an earthquake. To highlight the significance
of this case, we experiment with different events that can

cause fluctuations in load and capacity in three different
towns.

• We elaborate three heuristic methods that can be used for
UAV deployment, and compare their performance with
each other. Note that each of these methods provides dif-
ferent benefits based on the goals and condition of the
post-disaster area.

The rest of this paper is organized as follows. In Section 2,
we elaborate the related works including task offloading, edge
computing, UAVs. We introduce the air computing paradigm
in Section 3. In Section 4, we and describe the system model
including UAV deployment methods. Section 5 presents the
earthquake scenario, our simulation metrics, and the perfor-
mance evaluation of our system along with the experiments.
Finally, we provide conclusions in Section 6.

2. Related Work

Task offloading has been widely studied in edge and cloud
computing (Senyo et al. (2018)). Especially, delay-intolerant
application tasks can be offloaded to the edge (Feng et al.
(2022); Laroui et al. (2021)). In (Peng et al. (2021)), au-
thors focused on meeting QoS considering varied constraints
of IoT devices in an edge environment. To this end, they
proposed three constrained multi-objective evolutionary algo-
rithms (CMOEAs) to solve time and energy consumption prob-
lems for offloading scenarios in edge computing. Feng et al.
studied mission-critical IoT services by considering the op-
timization of green task offloading and priority-differentiated
queuing policies in (Feng et al. (2021)). They developed a
priority-differentiated offloading strategy by taking QoS re-
quirements of mission-critical applications into account. More-
over, they benefited the Lyapunov optimization technique con-
sidering the energy consumption (Neely (2010)). In (Xue et al.
(2021)), authors focused on the task offloading and resource al-
location. They proposed a dynamic incentive mechanism for
a multi-user and multi-vehicle vehicular edge computing en-
vironment. Moreover, they used the Stackelberg game (Zhang
and Zhang (2009)) for the interaction between users and service
providers. Xu et al. investigated efficient data routing paths re-
garding each offloaded task in (Xu et al. (2021)). Their objec-
tive was to maximize the network throughput in terms of the
number of successfully completed tasks. They formulated the
problem into a Integer Linear Programming (ILP) problem sub-
ject to several constraints including the task delay and network
resource capability. In (Chen et al. (2021)), authors studied on
an energy efficient offloading strategy. To this end, they de-
veloped a self-adaptive particle swarm optimization algorithm,
which reduces the system energy consumption.

Since UAVs can be deployed dynamically for networking
and task offloading, the load on the terrestrial resources can be
alleviated (Huda and Moh (2022)). Therefore, required QoS for
the corresponding applications can be met otherwise it would be
difficult to provide. In (Seid et al. (2021)), the authors proposed
a multi-agent deep reinforcement learning (MADRL) based
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method to minimize the computation costs in terms of energy
consumption and computation delay. To test the performance
of their method, they developed a multi-UAV enabled IoT edge
environment using a single controller Software-Defined Net-
working (SDN). Apostolopoulos et al. proposed a task offload-
ing system in which partial offloading of the tasks can be car-
ried out using edge servers and UAVs in (Apostolopoulos et al.
(2021)). Hence, they formulated a maximization problem us-
ing the principles of Prospect Theory (Kahneman and Tversky
(2013)) by considering the optimal user task offloading to the
available computing choices. In (El Haber et al. (2021)), the au-
thors focused on mission-critical applications considering UAV-
aided ultra-reliable low-latency computation offloading. Con-
sequently, they divided the problem into two phases. In the
first phase, they considered the optimization of the UAV place-
ment problem. In the second phase, they took the offloading
and resource allocation decisions into account for QoS. Thus,
they formulated these issues as non-convex mixed-integer pro-
grams. Wang et al. proposed a two-layer optimization method
considering deployment of UAVs and task scheduling in (Wang
et al. (2019)). They also considered offloading decisions and
resource allocation with the purpose of minimizing the system
energy consumption. In (Zhan et al. (2021)), the authors pro-
posed a framework for a multi-UAV-enabled edge system re-
garding the task offloading and resource allocation. Their goal
was to maximize the number of served IoT devices. They for-
mulated the corresponding optimization problem as a mixed in-
teger nonlinear programming (MINLP). Afterwards, they de-
veloped an iterative algorithm to solve the problem.

Recently, studies has focused on the disaster cases using
UAVs. In (Wang et al. (2022)), the authors addressed the bat-
tery and computational resource limitation of UAVs in a fog
computing environment. To this end, they proposed a practical
task offloading scheme for UAVs, which use ground resources.
Note that the tasks were offloaded from UAVs in their study.
For this purpose, they developed a stable matching algorithm
to match each UAV with a ground resource. Shah et al. in-
vestigated the maximization of an utility function considering a
disaster scenario in UAV-assisted edge computing networks in
(Shah et al. (2023)). They proposed an algorithm which jointly
optimizes computational capacity, UAVs location, user associ-
ation, required delay, and coverage. They compared the perfor-
mance of their method with a random and greedy schemes. In
(Jin et al. (2023)), the authors addressed the problem of the fair-
ness of ground users served by UAVs in a post-disaster rescue.
Therefore, they jointly optimized the number of service grids,
flight trajectory, and hovering position of UAVs. Thus, they
proposed a fair service policy model by using an adaptive area
division and consolidation method. Kaleem et al. proposed a
reinforcement learning based greedy algorithm to meet required
QoS and minimum rate of users in (Kaleem et al. (2022)). They
also addressed that an unplanned UAV deployment can cause
an interference from the neighboring co-channel stations. Their
simulation results showed that their proposed scheme outper-
formed the conventional water filling algorithm. In (Wang et al.
(2023)), the authors addressed the security threats on UAVs
during the data transmissions for UAV-assisted disaster rescue.

Hence, they developed a secure information sharing scheme by
considering task offloading from UAVs to ground vehicles. In
(Do-Duy et al. (2021)), the authors focused on a joint optimiza-
tion of resource allocation and real-time deployment regarding
a UAV-based relay system in emergency cases. They consid-
ered UAVs as flying relay nodes for the communication. There-
fore, they proposed a new k-means clustering model with sev-
eral QoS constraints to optimize UAV deployment. They also
aimed to maximize energy efficiency in terms of overall trans-
mitted data of users in the disaster area.

2.1. Differences between existing works

To the best of our knowledge, studies that work on aerial unit
support in the literature do not consider the dynamic events in a
disaster scenario. We believe that realistic handling of dynamic
events are essential for the performance evaluation of a system
since the reactive response of the corresponding methods is cru-
cial in an emergency situation. Moreover, related studies also
do not consider different application requirements which is also
important for the overall system performance. In this study, we
focus on how the corresponding UAV deployment methods re-
act based on different events such as destruction of the existing
resources, and increased number of users which affects the load.
Furthermore, we evaluate the conditions of different towns so
that we are able show that taking the application requirements
into account is essential for an acceptable system performance.

3. Air Computing

The essential idea of edge computing is that offloading the
computation-intensive tasks from end devices to the corre-
sponding edge servers since battery and CPU limitations can-
not allow the local execution. Therefore, users decide where to
offload and when to offload the corresponding tasks if there are
multiple edge servers nearby. However, since the delay require-
ments change for the mission-critical applications, and mobile
devices including tablets and smartwatches proliferate, tradi-
tional edge computing based on terrestrial resources would be
insufficient to meet the suitable computing capacity. As a rem-
edy, air based computational resources are recently proposed
to enhance the computational capacity by augmenting 3D net-
working opportunities.

The most popular implementation of this paradigm is UAV-
assisted edge computing since UAVs provide flexibility in terms
of flying, and lower latency since they are close to the ground.
However, other air vehicles including airplanes, balloons, and
LEOs are also used for this purpose. Since there is no con-
ventional title for this concept considering the organization of
these air vehicles regarding computational task offloading, we
propose the name of air computing. Thus, air computing in-
cludes all air vehicles in order to enhance the edge computing
paradigm. As a result, we believe that air computing is the evo-
lution of edge computing through air vehicles.
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3.1. Air Platforms
Air computing consists of three air platforms including LAP,

HAP, and LEO. Each platform provides different features re-
garding the requirements of the underlying environment.

3.1.1. LAP
The main deployment of LAP is on urban areas in which the

existing infrastructure is built well and therefore meets the QoS
of user applications. Since the operational altitude of the corre-
sponding air vehicles in LAP, which are UAVs, is below 10 km,
the propagation delay would change between 10 - 30 µs. More-
over, since they can provide Line of Sight (LoS), connectivity,
service provision, and latency can be ensured seamlessly.

Another important feature of LAP is the flexible utilization
of UAVs considering their easily configurable stationary posi-
tions. Therefore, UAVs can use their computational capacity
efficiently since they can easily move to areas where user den-
sity is high. Note that apart from their computational assistance
for air computing, they can also be used as relay nodes in order
to provide seamless mobility.

Even though LAP provides many benefits in dynamic envi-
ronments, energy consumption is an important issue for UAVs
since they need charging stations for their batteries. Moreover,
this maintenance should be performed daily as their batteries
are limited. Note that the energy consumption of UAVs can be
affected by weather conditions and rains, especially when they
move horizontally against the wind.

3.1.2. HAP
Air vehicles in HAP can be used on urban and suburban ar-

eas since they can fly at high altitudes between 10 - 30 km.
Therefore, their propagation delay changes between 50 - 85 µs.
Moreover, channel and weather conditions also affect commu-
nication quality. Thus, they cannot be used for mission-critical
applications whose delay tolerance is low.

The essential use case for HAP is for regional coverage in
which airplanes and balloons can be deployed as management
nodes for UAVs and terrestrial servers. Moreover, they can be
used as computational resources if the SLA requirements of the
corresponding tasks would not be violated by the delay. Note
that even though the delay is higher in HAP, it would still be
lower than the cloud server option which is deployed in the
wide area network (WAN). On the other hand, even though they
may provide a relatively stationary position, they cannot use
their capacity as efficiently as UAVs since their configurability
is not flexible.

One of the most important advantages of balloons and air-
planes is that they can fly for days since they use fuel as their en-
ergy source. Moreover, the effect of weather conditions would
be limited because of their altitude. Thanks to these important
features, HAP can be used for long-distance communication,
energy consumption, and management opportunities.

3.1.3. LEO
LEO platform consists of satellites whose altitude changes

between 160 - 2000 km. Because of this altitude range, its prop-
agation delay would be between 1.5-3 ms which is not suitable

for low latency applications. However, they can carry out edge
computing solutions through task offloading as either used as a
relay node or using their limited onboard capacity. Moreover,
they are also used to access cloud computing solutions.

Based on their features, LEO is generally utilized for rural
areas whose access to computing resources is limited. Because
of this reason and their high speeds, their capacity would be
wasted. On the other hand, they can give service for months
since they can meet their required energy from sonar power.
Moreover, their energy consumption cannot be affected by
weather conditions due to their altitude.

3.2. Advantages

Air computing provides many advantages regarding task
offloading, content caching, latency, coverage, and mobility.
Considering task offloading, which is the essential use-case of
air computing, 3D networking opportunities employ various
computational technologies through different air layers. For
example, if the existing infrastructure is built well such as an
urban area, air computing would consist of only edge servers or
UAV-assisted edge servers. On the other hand, if there is limited
infrastructure in a suburban or rural area, UAVs, airplanes, and
LEOs would be organized to meet the required QoS. Thus, task
offloading can be carried out without considering geographical
disadvantages. Moreover, dynamic conditions of different envi-
ronments would not affect the given service since air computing
can adapt itself to the ever-changing environment. Furthermore,
task offloading can be performed for both ground users and the
users in the air. Hence, while users in the air can offload their
tasks to the ground servers, terrestrial users can carry out the
offloading using air vehicles.

Content caching is also another important execution of air
computing. Since air vehicles can be used dynamically based
on the needs, the corresponding contents related to a specific
area or user groups can be cached easily. Therefore, users can
access the requested pages, tools, and applications with low
latency. Considering the fact that content caching optimizes
three objectives including QoS guarantee, content popularity,
and utility maximization (Ouyang et al. (2018); Zhang and Zhu
(2018)), users can benefit from the high hit ratio, which is the
essential performance measurement for the quality of content
caching optimization.

The coverage and therefore mobility are also performed with
low latency through air computing. Since air computing can
provide seamless coverage and pervasive connectivity through
different air platforms, it can provide high mobility over 1000
km/hr. Moreover, the collaboration of different air vehicles al-
lows a smooth handover process of the corresponding tasks.

4. System Model

In our air computing model, we design the environment con-
sidering the ground, LAP, and HAP layers as shown in Figure
2. Each layer has significant components to carry out the air
computing paradigm for dynamic capacity enhancement. The
ground layer includes users, applications, tasks, towns, and
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Town-1

Town-2

Town-3

Figure 2: Air computing environment in this study.

edge servers. On the other hand, the LAP layer consists of
UAVs which can fly dynamically to a corresponding location to
enhance the capacity. The HAP layer comprises a correspond-
ing air vehicle, which is an airplane, that covers each town. It
is used as a management node for UAVs since it receives the
most recent information about the environment. We detail each
component in this section.

4.1. User

A user is a fundamental element for the ground layer in an air
computing environment since their quality of experience (QoE)
is the essential measurement for the performance of the system.
A user can reside in an urban area, suburban area, or rural area
to perform their tasks by utilizing air components. However, the
demand for those air components may depend on the existing
infrastructure and corresponding load. For example, if a user
can exploit the edge servers in a Local Area Network (LAN),
they may not need to use air components. However, on the
other hand, if the load is extremely high with respect to the
existing capacity in the network, then users would utilize air
components to meet the expected QoS for their tasks. Note that
user can run multiple applications considering different SLA
requirements.

4.2. Applications

An application consists of atomic tasks each of which has a
SLA requirement. If the latency which is required by SLA is
exceeded, the corresponding task is assumed to be failed. Note
that there would be multiple application types that have differ-
ent latency requirements.

A task of an application can run on a user’s device or it can
be offloaded to either a UAV or an edge server to be processed.
Hence, we are able to calculate the overall success rate of an
application based on the success rate of its tasks.

4.3. Edge Servers

The primary computational resource in air computing is edge
servers. An edge server can be placed in urban or suburban

areas in which there is an infrastructure. They are preferred
by applications to offload their task in order to meet the corre-
sponding QoS since edge servers provide lower network delay
than cloud servers.

On the other hand, the capacity of an edge server is not as
high as a cloud server. Therefore, if a task requires a high com-
putational capacity and its delay tolerance is not low, it would
be wise to be offloaded to a cloud server. We assume that each
task in the environment has low delay tolerance and should be
offloaded to one of the available edge servers or UAVs.

4.4. UAVs

We consider a UAV as a flying edge server with less capac-
ity. They have similar features as edge servers however, since
they are not connected to a ground power supply, and they are
smaller, their computational capacity is lower than edge servers.
Thus, they are used as the secondary computational resources to
increase the capacity if needed in air computing. On the other
hand, if there is no existing ground infrastructure, then they be-
come the primary computational resource.

The most important difference of a UAV regarding an edge
server is that they are not always available physically for a par-
ticular location since they may have to relocate or recharge.
Therefore, considering the offloading case, a UAV does not ac-
cept an offloaded task to process when it starts to relocate to
another place.

4.5. HAP Vehicle

Each UAV in our system is able to fly from one location
to another based on the UAV deployment method computed
and provided by the HAP vehicle throughout the environment.
Since the airplane can cover the area including each town, it
can receive the most recent information about users and UAVs
through a separate communication channel. Thus, the connec-
tion information of users to the corresponding edge servers and
UAVs, number of tasks, and the real-time location of UAVs can
be provided to the airplane. Note that the airplane is not used
for task offloading in this study; it is only utilized for the corre-
sponding calculations, and management.

4.6. Task Offloading

Vertical networking opportunities through air computing pro-
vide important advantages for task offloading. In our system,
since WAN delays prohibit delay intolerant tasks to be offloaded
to the cloud, a user task can be offloaded to either an edge server
or a UAV based on their availability.

Note that since our focus in this study is UAV deployment
methods regarding the dynamic capacity enhancement for a dis-
aster situation, we apply only a single policy for task offloading.
Hence the offloading policy is that the corresponding task is of-
floaded to a server, including edge or UAV, whose estimated
response time is the smallest. There would be many alternative
methods for task offloading between an edge and UAV as their
capacities are different, however we apply this method consid-
ering the disaster scenario.
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We assume that the bandwidth in LANs is very high so we
presume that LAN delays are not load dependent. Thus, com-
putational delays are the most decisive parameters for the suc-
cess rate of tasks.

4.7. Objective

Our main goal for this study is to maximize the success rate
of tasks. Each produced and offloaded task has a worst-case
latency requirement based on the type of the corresponding ap-
plication. Thus, a UAV deployment method applied to the ac-
tive UAVs in the network is crucial for the performance of the
environment.

4.8. UAV Deployment Methods

In order to demonstrate the dynamic capacity enhancement
with different objectives, we propose three different methods
for UAV deployment considering an environment where sev-
eral towns may face a disaster. The disaster may be a flood, fire,
hurricane, or earthquake. We manage each method on the HAP
layer by collecting the corresponding statistical information in-
cluding the number of tasks, user connectivity to edge servers,
and UAV locations. Afterwards, we run the related methods on
UAVs.

4.8.1. Load Balancing Method
Each city or town in an environment can be affected by the

disaster differently. Therefore, the load produced by the appli-
cations can vary based on the different events such as rescue
operations, increasing number of users, and panic. To this end,
the load balancing method takes the number of tasks of each
town offloaded in a predefined time period into account, and
send a UAV to the location where the task count is the highest.

Considering the multiple UAVs and multiple towns, this
method initially sends a UAV to the corresponding location and
then subtracts a predefined number of tasks from its original
number of tasks. Thus, the next UAV would be sent to another
place if the original number of tasks of the towns is close to
each other. Otherwise, if there is a large imbalance in the task
density in those locations, the same location would be selected
for the next UAV again. As a result, this method provides load
balancing between different towns based on their task count.

4.8.2. Emergency Method
The emergency method considers an area where the existing

infrastructure is destroyed by the disaster. Therefore, it checks
the users who are not able to offload their tasks to any edge
server and UAV. After the detection of those users, a corre-
sponding UAV is sent to the center location of those users.

In order to define the center location, this method uses the
k-means algorithm by taking the location information of the
corresponding users into account. Therefore, the value of k de-
pends on the environmental dynamics. Each destructed infras-
tructure of a town would increase the value of k by one. Note
that the number of UAVs in the environment should be higher
than the value of k to apply this method correctly.

4.8.3. Location Selection Index
The Location Selection Index (LSI) method computes how

many UAVs are required for an affected area considering the
delay requirements of the application types. To this end, this
method reactively takes the corresponding decisions.

Since the most important performance metric for a success-
fully completed task is its overall latency, the underlying infras-
tructure including edge and UAV should provide the necessary
computation capacity. Moreover, that capacity should be con-
sidered for the existing load, which may change dynamically,
in the area. To this end, the average delay in the correspond-
ing area considering the capacity of UAVs and edge servers is
calculated using an M/M/1 queueing model. Note that other
models could also be used easily as long as they consider the
current load on the system.

After the calculation of the average delay, our method com-
pares it with the required delay considering the application
types in the area. There are two essential cases that we should
send UAV to increase the capacity: (1) If the required delay is
smaller than the calculated average delay, (2) if the capacity of
the resources, including edge servers and UAVs, is smaller than
the load. Finally, based on the required capacity and capacity
of UAVs, we compute the required number of UAVs to send the
corresponding area.

4.8.4. Random Method
As a baseline, we also implemented the random method

which randomly assigns each UAV to one of towns in the envi-
ronment.

5. Performance Evaluation

We developed a simulation environment in order to test
the performance of UAV deployment methods considering an
earthquake scenario. We evaluated their performance based on
the overall task success rate and the task success rate of the cor-
responding towns affected by the earthquake.

5.1. Scenario

In our scenario, we have three towns which are affected by
the earthquake at different extents. Town-1 is the most affected
area as its infrastructure is completely destroyed. On the other
hand, Town-2 severely senses the earthquake with no physical
damage. Finally, Town-3 senses the earthquake mildly. The
outcomes are depicted in Figure 3.

Each town has an edge server that is normally accessible by
each user in the town. Initially, the computational capacity of
each town is sufficient to meet the required worst case delay
for the tasks of its users. However, after the earthquake, the
demand of tasks, and the number of users change based on dif-
ferent events such as search and rescue activities, and rushing
users. Therefore, additional capacity should be considered.

The duration of our simulation is 4000 seconds in which the
earthquake happens at 1000 seconds. Before the earthquake,
each user in Town-1 and Town-2 uses an application whose
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Town-3Town-2Town-1

Figure 3: The towns are affected by the earthquake differently in our scenario.
Town-1 including its infrastructure is destroyed, while Town-2 is seriously af-
fected. On the other hand, Town-3 has no damage but senses the disaster.

required number of CPU units, worst-case delay, and interar-
rival time are 90 units, 1-second, and 3.33 seconds, respectively.
These parameters are the same for Town-3 except for the worst-
case delay which is 2 seconds.

After the earthquake at 1000 seconds, utilization of applica-
tions would differ based on the conditions of the towns and the
effect on users. Therefore, the utilization of applications triples
for each town due to the panic of people so that their new in-
terarrival time is 1 second. Note that the edge server in Town-1
has been destroyed and out of service when the earthquake hit.

Starting from 2000 seconds, the number of users doubles for
each city because of several reasons. For Town-1, there are
many rescue operations as the town is severely damaged. On
the other hand, those operations are managed from Town-2 as
its infrastructure has not been affected. Finally, aftershocks are
observed using a facility in Town-3. Note that since rescue op-
erations and their management are critical, the worst-case delay
and interarrival time of the new users’ tasks are 1 second with
90 CPU units. However, since the observation of aftershocks
would not be as critical as those rescue operations, the worst-
case delay for new users’ tasks in Town-3 is 5 seconds with
12 CPU units. Moreover, their interarrival time is 1 second as
aftershocks are frequent.

In simulations, we used edge servers as terrestrial resources.
Note that we did not consider cloud servers for offloading since
majority of the tasks would be failed considering the wide area
network (WAN) delay and required worst-case delay of tasks.
Moreover, WAN performance could also be affected by the dis-
aster. Each edge server in each town is identical; an edge server
has a capacity of 100K CPU units/sec. We assume that each
user in three towns is in the range of an edge server so that they
can offload their tasks.

Each UAV in the simulation environment is identical in terms
of capacity, radius, and altitude. To this end, a UAV has a ca-
pacity of 50K CPU units/sec, a horizontal radius of 100 meters
for the offloading range, and an altitude of 200 meters. Note
that a UAV does not receive an offloaded task when it is flying
towards its destination. Therefore, a task can only be offloaded
to a UAV when it arrives to its deployed location. Moreover,
all of the offloaded tasks in a UAV queue are processed and re-
turned to the corresponding user regardless of UAV flying state.
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Figure 4: The effect of the non-UAV policy in time domain. The earthquake
happens at 1000 second, and the number of users in each town doubled at 2000
seconds.

In our simulations, we consider only the offloaded tasks. If a
user is in the range of both an edge server and a UAV, a task is
offloaded to the corresponding resource whose available time is
the closest. To this end, we assume that users are informed by
the HAP about the queueing conditions of the resources. The
fixed WLAN delay used in simulations is 1ms for the tasks of-
floaded to an edge server, while it is 5ms for the tasks offloaded
to a UAV.

5.2. Results

We first observed the outcome of the policy of no UAV case,
which can be considered as the baseline. As shown in Figure 4,
the task success rate decrease to 0% after the earthquake at 1000
seconds since the infrastructure, which is the edge server in our
scenario, is destroyed. Therefore, the corresponding tasks of
the users in Town-1 cannot be processed. Moreover, since no
UAV is used after the earthquake, the condition of Town-1 does
not improve. On the other hand, the task success rate in Town-2
and Town-3 starts to oscillate after the earthquake since the ap-
plications are used more frequently so that the capacity of the
existing infrastructure cannot be sufficient completely. Espe-
cially, when the number of users doubles after 2000 seconds,
the task success rate of Town-2 decreases to 0% regarding the
delay requirements of the tasks. Besides, the decline of the task
success rate in Town-3 is not as sharp as in Town-2 since the
delay requirements of tasks in Town-3 can provide more toler-
ance to queueing delay in the edge server. It is important to note
that each town produces the same amount of tasks.

Initially, we evaluated the performance of UAV deployment
methods for each town. Afterwards, we compared the overall
performances. Note that since the results are plausible for each
method after 4 UAVs, we assessed the results starting from 4
UAVs. The results for each town are shown in Figure 5.

Considering Town-1, the performance of the emergency
method is superior until 8 UAVs as shown in Figure 5a. This
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(a) Results of Town-1 (Destroyed)
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(b) Results of Town-2 (Affected)
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(c) Results of Town-3 (Sensed)

Figure 5: The results of each town for different UAV deployment methods.
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Figure 6: Overall task success rate performance of UAV deployment methods
based on the number of UAVs.

is the expected result as all available UAVs are directed to the
disaster area when the emergency method is deployed. Since
other methods also take the conditions of other towns into ac-
count, they send the corresponding UAVs to other locations in
addition to the disaster area. The effect of this consideration
manifests itself in the results of Town-2 and Town-3 as shown in
Figures 5b and 5c, respectively. The emergency method is the
worst method for those two towns since it does not allocate any
UAVs for those locations. On the other hand, the LSI method
outperforms other methods since it allocates UAVs based on the
load and delay requirements of the tasks in those towns. Since
the load balancing method assigns UAVs to towns based on the
number of tasks and does not evaluate the delay requirements,
it could not provide as sufficient task success rate as the LSI
method.

Apart from the town-based results, we also evaluated the
overall performance of UAV deployment methods. As shown in
Figure 6, the LSI method outperforms other approaches. Note
that the only exception with four UAVs is originated by the fact
that the emergency method sends all UAVs to the disaster area.

Since we are proposing a mechanism for dynamic capacity

enhancement, we also evaluated the performance in time to ob-
serve the impact of the earthquake and the efficiency of UAV
deployment methods more clearly. To this end, we analyzed
the case in which each method uses 8 UAVs. As shown in Fig-
ure 7, the task success rate of Town-1 drops drastically for each
method when the earthquake happens. Afterwards, its recov-
ery varies based on the reactive quality of the corresponding
method. For example, as shown in Figure 7a, the recovery in
the emergency method is rapid, and it is not affected by the
doubled number of users after 2000 seconds since all of the
UAVs are deployed in the disaster area. However, since the dy-
namic capacity enhancement cannot be carried out for Town-2
and Town-3, their task success rate oscillates and then declines,
respectively. The fast recovery also occurs in the load balanc-
ing method as shown in Figure 7b. However, since it deploys
UAVs evenly considering the number of tasks for each town,
the success rate of Town-1 declines rapidly after 2000 seconds.
Moreover, the enhanced capacity of Town-2 also causes oscilla-
tions in task success rate since it cannot meet the required delay
for each task. The random method shown in Figure 7c causes
poor results for each town, especially Town-1, and Town-2. Fi-
nally, the LSI method provides the highest task success rate as
shown in Figure 7d. The main reason of its success is that it
takes the delay requirements of applications for each town into
account and deploys each UAV to those towns based on their
demand.

6. Conclusion and Future Work

In this study, we proposed a new paradigm called air com-
puting by extending edge computing to multiple air platforms.
Considering the ever-growing delay-intolerant application de-
mands, we believe that air computing would be the next-
generation computational paradigm to solve QoS-related issues
using 3D networking technologies.

To show an important aspect of the benefits of air comput-
ing, we studied an earthquake case by applying efficient UAV
deployment methods under HAP management in order to en-
hance the capacity of the affected areas dynamically. To this
end, we applied a scenario in which three towns are affected
by the earthquake with different severity. Thus, we applied an
emergency method, which considers only the destroyed area, an
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(a) The Emergency Method
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(b) The Load Balancing Method
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(c) The Random Method
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(d) The LSI Method

Figure 7: The effect of earthquake and UAV deployment methods in time considering 8 UAVs.

load balancing method, which deploys UAVs based on the num-
ber of tasks produced, a random method, and the LSI method,
which computes the delay requirements and required number
of UAVs of each town for the UAV deployment.

The experimental results showed that the applied methods
should be chosen based on the goals in the environment. For ex-
ample, if the importance of the task success rate in the disaster
area is the most prominent, then the emergency method should
be applied. Moreover, if the number of available UAVs is suffi-
cient based on the capacity of those UAVs, the LSI method can
also be applied considering other towns. On the other hand, if
each town is important regarding different functions of them,
then the LSI method should be applied. Note that the load bal-
ancing method would also be useful if the task requirements in
each town are similar regarding their worst-case delay.

All of the methods in this study are reactive since they de-
ploy UAVs after the disaster has happened. However, consid-
ering a dynamic environment in which users are also mobile,
a proactive approach in which UAVs can be deployed to the
corresponding attraction points could be useful. Therefore, we
plan to develop a new proactive dynamic capacity enhancement
scheme as future work.
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