
1

DeepEdge: A Deep Reinforcement Learning
based Task Orchestrator for Edge Computing

Baris Yamansavascilar, Ahmet Cihat Baktir, Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy

F

Abstract—The improvements in the edge computing technology pave
the road for diversified applications that demand real-time interaction.
However, due to the mobility of the end-users and the dynamic edge en-
vironment, it becomes challenging to handle the task offloading with high
performance. Moreover, since each application in mobile devices has
different characteristics, a task orchestrator must be adaptive and have
the ability to learn the dynamics of the environment. For this purpose,
we develop a deep reinforcement learning based task orchestrator,
DeepEdge, which learns to meet different task requirements without
needing human interaction even under the heavily-loaded stochastic
network conditions in terms of mobile users and applications. Given
the dynamic offloading requests and time-varying communication con-
ditions, we successfully model the problem as a Markov process and
then apply the Double Deep Q-Network (DDQN) algorithm to implement
DeepEdge. To evaluate the robustness of DeepEdge, we experiment
with four different applications including image rendering, infotainment,
pervasive health, and augmented reality in the network under various
loads. Furthermore, we compare the performance of our agent with the
four different task offloading approaches in the literature. Our results
show that DeepEdge outperforms its competitors in terms of the per-
centage of satisfactorily completed tasks.

Index Terms—Edge Computing, Task Offloading, Deep Learning, Re-
inforcement Learning, Deep Reinforcement Learning

1 INTRODUCTION

THE number of end-users increases dramatically that
causes tremendous amount of data in networks by

using applications which have diverse requirements. Even
though the cloud computing solutions have been used to
cope with those application requirements, it is insufficient
considering the high data rates, real-time response require-
ments, vast amounts of data, and user mobility [1]. Thus,
edge computing is recently applied in order to manage the
diverse demands of networks [2].

Edge computing is an umbrella term [3] that encom-
passes several similar technologies including Cloudlet [4],
Mobile Edge Computing (MEC) [5], and Fog Computing
[6]. The idea behind the edge computing is to provide
services to applications in a Local Area Network (LAN)
or Metropolitan Area Network (MAN) without routing the
offloaded tasks to the Wide Area Network (WAN) which
causes high service delays that may affect QoS. The expec-
tation from an edge network is that the user can offload
its tasks, which cannot be performed on the device, to
the corresponding edge server. As a result, end-users can
rapidly access and exploit computational resources, and the
core network is relieved.

An edge computing environment is one of the most
dynamic and heterogeneous environments since it may
consist of multiple edge servers, different services, tasks,
technologies, and user profiles. Therefore, deciding where
and how the offloaded tasks must be processed in the
edge network is crucial. The methodology of this decision
is called task orchestration. The primary job of the task
orchestrator is to determine whether the offloaded tasks of
the users are processed in the cloud via WAN or in the
edge via LAN/MAN. Afterwards, if the requested service
is available in the edge, the orchestrator should choose the
corresponding edge server based on several metrics includ-
ing delay, length of the task, bandwidth, and utilization of
edge servers. A typical architecture of an edge computing
environment that consists of the Internet of Things (IoT),
edge, and cloud tiers is shown in Figure 1.

A task orchestrator should be scalable and adaptive since
the requirements of the applications and mobile networks
may change over time due to their dynamic and heteroge-
neous nature. Since many parameters must be taken into
account, such as delay requirements, length of the task,
bandwidth, and utilization of edge servers, traditional rule-
based orchestrators would be insufficient to make an ac-
curate decision considering the constraints of the problem.
Therefore, a policy must be created in an intelligent way and
applied such that the unique demands of the applications
are met.

Considering the dynamics of the edge computing net-
works, the policy for task orchestration should be learned
from the environment in order to make accurate decisions.
Deep Reinforcement Learning (DRL) is widely used to
implement decision-making systems modeled by a Markov
Decision Process (MDP) [7]. The most important advantage
of the DRL is that the agent learns the environment dynam-
ics on its own using the reward mechanism of the system
without any human interaction. Therefore, ranging from
the communication needs of unmanned aerial vehicles [8]
to spectrum allocation studies [9], [10], DRL solutions are
applied recently in computer networks. Task offloading in
edge computing is one of the areas in communication that
DRL is also performed [11], [12]. We give their details and
also explain what features make our study unique in Section
II.

In this study, we introduce our DRL-based task orches-
trator, DeepEdge, that is able to meet the dynamic needs
of different application types including image rendering, in-

ar
X

iv
:2

11
0.

01
86

3v
2

 [
cs

.N
I]

 3
1

M
ar

 2
02

2

2

TABLE 1: List of abbreviations

Notation Description
DQN Deep Q-Network
DDQN Double Deep Q-Network
DRL Deep Reinforcement Learning
MEC Mobile Edge Computing
LAN Local Area Network
MAN Metropolitan Area Network
WAN Wide Area Network
IoT Internet of Things
MDP Markov Decision Process
QoS Quality of Service
QoE Quality of Experience
VM Virtual Machine
SLA Service Level Agreement

fotainment, pervasive health, and augmented reality under
various loads. We designed detailed simulation experiments
to evaluate the performance of our proposal in a realistic
setting where computational and network level factors are
varied. We compared the results with several decision-
making systems including the recently developed Fuzzy
Logic approach [13]. Our contributions in this study can be
summarized as follows:

1) DeepEdge can handle the diverse needs of different ap-
plications by offloading their tasks into the appropriate
edge or cloud server. To the best of our knowledge, the
performance evaluation for the application types which
have different requirements to meet based on a DRL
model has not been performed in the literature.

2) Our DeepEdge orchestrator has learning capability so
that it adapts to heavily-loaded environments in terms
of mobile users without human interaction. Since stud-
ies that apply DRL in the literature do not investigate
the effect of the number of mobile users on a decision-
making system appropriately, we explore the limits of
our DRL agent by deploying varying amount of mobile
devices in our simulations.

3) Even though the stochastic nature of the edge comput-
ing environment due to different application types and
user mobilities cause the delayed action effect, we can
model the problem as a Markov process rather than ap-
plying policy gradient or semi-Markov process that are
used by studies to provide a policy for task offloading.
Thereby we can implement the DDQN algorithm for
orchestration.

4) We perform online training which is complicated to ap-
ply due to stochastic and real-time environment rather
than using historical data for DRL.

The rest of this paper is organized as follows. In Section
2, we give a summary of the related works that use deep
learning for the task offloading in an edge environment.
We formulate the task orchestration problem in Section 3.
Section 4 provides the details of DeepEdge including the
general architecture along with the training method of the
system. In Section 5, we present performance evaluation
of our proposed solution. Finally, we conclude our study
in Section 6. We list the abbreviations used throughout the
paper in Table 1.

Users

WLAN Edge Server

MAN

Edge Server
WLAN

AP AP

Cloud

WAN

Orchestrator

Io
T

Ti
er

Ed
ge

 T
ie

r
C

lo
ud

 T
ie

r

Users

Fig. 1: A three-tier edge computing network.

2 RELATED WORKS

As deep learning solutions provide more accurate results
in decision-making systems than the heuristic approaches,
they are recently used by studies in edge computing. To
this end, the main objective of the Yu et al. [14] was to
minimize the offloading cost regarding network resources.
The authors used a single cell edge computing network and
proposed a framework that considers partial computation
offloading. They formulated the application, network, and
remote/local execution models which were used to gen-
erate the training data. They proposed their deep learning
model and compared its performance with several offload-
ing schemes in terms of system cost and offloading accuracy.
Their scheme was the most successful one among other
schemes by reaching up to 60% accuracy. On the other hand,
in [15], Ali et al. built an energy-efficient deep learning
based offloading system considering partial tasks. They took
the device battery and the energy consumption information
into account in order to decide the task was to be offloaded
or not. They created a mathematical model based on local
and remote execution to generate the training set. They
assumed that the decision policies calculated through the
mathematical model are 100% accurate. They compared
their approach with several schemes regarding offloading
accuracy, energy consumption, and cost based on the num-
ber of data samples.

Apart from the traditional DL approaches, different
classes in DL are also used by studies in order to provide
novel solutions. In [16], Liu et al. implemented an intelligent
edge-chain enabled access control framework with vehicle
nodes, and RoadSide Units (RSUs). In their scenario, the ve-
hicles were lightweight nodes and RSUs were used as edge
nodes. The main goal was to perform a secure access control
framework for IoV devices. Since such a system requires a
historical dataset, they implemented a version of Generative
Adversarial Networks (GANs) namely WCGAN. The re-
sults showed that their proposed system outperformed the
competitors considering the prediction of attacks. However,
they did not consider different application/task types even
though they did not use historical data as in this study.

3

Even though DL solutions allow high accuracy, they
need historical data which is either labeled for supervised
learning or unlabeled for clustering. Moreover, since the
correct decision may vary due to the dynamics of the edge
computing environment, it is not always possible to train
a DNN using traditional methods. Thus, DRL approaches
gain attention recently in the literature because of their self-
learning capability and high accuracy. In [12], the authors
applied a DRL based offloading system for vehicular edge
computing. They focused on task scheduling and resource
allocation by considering a trade-off between the Quality of
Experience (QoE) of the users and the profit of the servers.
They split their solution into two modules in which the first
one is responsible for the task scheduling, and the second
one is used for resource allocation. They implemented DRL
for the second module in order to relax the problem. They
evaluated the execution time of tasks and the average QoE
of users up to 10 vehicles. The results showed that their
proposed system is more successful than competitors.

In [17], the authors used DRL to manage resources at the
network edge considering mobility-aware data processing
service migration. Their main interest was to lower migra-
tion and communication costs between Virtual Machines
(VM) and users. To this end, they implemented Deep Q-
Network (DQN) algorithm in simulation-based experiments
consisting of 50 edge servers and 500 users that randomly
move. Their DQN agent outperformed its two competitors
in terms of the total cost.

Gong et al. [11] considered the trade-off between the lo-
cal execution cost and task offloading cost regarding energy
consumption. To this end, they proposed a hybrid offload-
ing model based on DRL that uses complementary processes
of active RF and low-power backscatter communications.
Their DRL agent was trained such that it learns to perform
optimal transmission method and task offloading between
two technologies.

Li et al. [18] proposed a DRL based framework that
aims to minimize the total cost of the delay and energy
consumption for all devices in the network. According to
the considered local computing and offloading models, the
goal of their DRL agent was to find the optimal values of the
decision vector and the allocated computational resources
to complete the task. They applied their agent in a network
that has one edge server and evaluated its performance by
comparing them with full offload, full local, and the tradi-
tional q-learning considering the total cost. They evaluated
the agent up to seven users.

In [19], Zhu et al. performed a similar study as [18] for
task offloading by proposing a DRL agent that considers the
task completion time and energy consumption. They evalu-
ated the performance of their agent with the local execution
and random offloading algorithms regarding those two met-
rics using one edge server. Based on the different number
of components for offloading, their approach outperformed
other methods.

Meng et al. [20] considered the mean slowdown of the
tasks in the queue and the energy consumption. They cre-
ated a single-user and single edge server setting to evaluate
their performance along with the other three offloading
schemes including all offload, all local, and random.

In [21], Lu et al. implemented a DRL-based offloading

system that solves the partial task offloading problem for
edge computing. Their main goal was to reduce the latency,
cost, and energy consumption in the edge network. They
improved the DQN algorithm for DRL by using a LSTM
network. They compared the performance of their system
with several DRL solutions and heuristic algorithms based
on energy usage, network cost, load balance, and latency
metrics. The simulation environment included up to 100 ap-
plications, 60 edge servers, and a cloud server. However, the
application types and their individual performance were not
evaluated, and the number of mobile users in the network
was not specified.

In [22], Tang et al. considered the task offloading prob-
lem for non-divisible and delay-sensitive tasks. Thus, they
used a model-free DRL-based distributed algorithm in
which each device takes an action in the environment. To
improve the performance of their model, they also include
the long short-term memory (LSTM), dueling DQN, and
DDQN techniques. In [23], the objective was to minimize
the average task execution delay and the end device en-
ergy consumption on each task by applying a DRL-based
joint optimization approach for both device-level and edge-
level task offloading. Wu et al. [2] on the other hand, im-
plemented two techniques including decentralized moving
edge and multi-tier multi-access edge clustering in order to
tackle the mobility, high density, sparse connectivity, and
heterogeneity challenges in edge computing. Hence, they
used fuzzy logic to jointly consider the multiple inherently
contradictory metrics and Q-learning to achieve a self-
evolving capability.

In [24], Carpio et al. propose a QoS provider mechanism
to work in dynamic scenarios by using a model-free DQN.
They optimized QoS by identifying and blocking devices
that may cause service disruption due to the dynamicity of
the edge computing environment. Alfakih et al. [25] consid-
ered the resource management problem in the edge server
by performing the optimal offloading decision. Therefore,
they implemented on policy RL-based SARSA algorithm
in order to minimize the system cost, including energy
consumption and computing time delay. In [26], Chen et
al. carried out two double DQN-based online strategic
computation offloading algorithms in order to maximize
the long-term utility performance of the edge computing
environment. The offloading decisions were taken based on
the task queue state, the energy queue state as well as the
channel qualities between a mobile user and BSs. [27] used
a DQN-based algorithm in order to take task offloading
decisions and carry out wireless resource allocations to the
time-varying wireless channel conditions.

Some of the recent studies have focused on the actor-
critic algorithms considering each user in the network may
take its own offloading decision based on the agent runs
on the user device. To this end, Liu et al. [28] implemented
counterfactual multi-agent (COMA) policy gradient, which
is a class of actor-critic reinforcement learning approach to
solve the energy-aware task migration problem. Their goal
was to minimize the average completion time of tasks under
the migration energy budget. On the other hand, Cao et
al. [29] used multi-agent deep deterministic policy gradi-
ents (MADDPG) algorithm [30] to solve the coordination
of channel access and task offloading in order to achieve

4

TABLE 2: The features of highlighted studies that focused DRL for edge computing

Study Solution Method
Max

Mobile Device
Max

Edge Server
Different

Task/App Types
Delayed Action

Effect
[22] Model-free DQL-based

distributed algorithm
150 5 - 7

[23] Model-free DQN for both
device-level and edge-
level task offloading op-
timizations

400 4 - 7

[24] Model-free DQN 15 1 - 7
[2] Fuzzy logic to jointly con-

sider multiple inherently
contradictory metrics and
Q-learning to achieve a
self-evolving capability.

500 1 - 500 - 7

[25] On policy SARSA 5 1 - 7
[26] Two DDQN-based online

strategic computation of-
floading algorithms

6 1 - 7

[28] Counterfactual multi-
agent (COMA) policy
gradient, which is a
class of actor-critic
reinforcement learning
approach

60 16 - 7

[27] DQN-based DROO Algo-
rithm

30 1 - 7

[29] MADDPG algorithm
which is a variant
of the actor-critic
method for multi-agent
environments

40 1 BS with 5 channels - 7

This study Model free DDQN 2400 14 4 3

efficient computing.
Considering our extensive examination of the literature,

to the best of our knowledge, our study is the first study
that investigates the limits of a DRL agent considering
the individual application performances and dense envi-
ronments in terms of the number of mobile devices. Table
2 shows the main differences between our study and the
recent studies that applied DRL. Except for this study, no
other studies have examined the performance of a DRL
agent considering the different application types that have
different features including poisson interarrival times, task
size, time sensitivity, etc. This is an important aspect since it
increases the level of stochastic nature of the problem in
which providing the Markov property is complex. How-
ever, in this study, we can successfully ensure the Markov
property in an edge computing environment including all
application and mobility requirements related to the task
offloading. Moreover, considering the max mobile device /
max edge server ratio in Table 2, we force our agent to take
decisions in a very dense environment.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the task orchestration problem
for the three-tier edge computing environment. The symbols
used in the formulation are given in Table 3.

3.1 System Overview
We consider the edge computing environment as a set of
edge servers represented by 𝑁𝑠 = {1, 2, ..., 𝑁}, a set of mobile
users denoted by 𝑀𝑠 = {1, 2, ..., 𝑀}, and a set of tasks
depicted by 𝑄𝑠 = {1, 2, ..., 𝑄}.

TABLE 3: List of symbols

Symbol Description
𝑁 Number of edge servers
𝑀 Number of users
𝑄 Number of tasks
𝑡𝑚𝑎𝑛 MAN delay
𝑡𝑤𝑎𝑛 WAN delay
𝑡𝑞 Total delay of offloaded task q
𝑡𝑛𝑒𝑡𝑤𝑜𝑟𝑘 Total network delay
𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒 Service time of edge or cloud server
𝑡𝑆𝐿𝐴 Maximum allowed latency based on SLA of task
𝐶 𝑗 j-th edge server capacity
𝑤𝑞 The size of task q
𝑥𝑖 𝑗𝑞 User i offloads task q to the edge server j
𝑦𝑖𝑞 User i offloads task q to the cloud
𝑢𝑖𝑞 User i generates task q
𝛼𝑞 Success condition for offloaded task q

In our architecture, there are three tiers as shown in
Figure 1. In the IoT tier, mobile devices generate tasks to
be offloaded. The edge tier consists of edge servers and the
orchestrator. Each mobile device in the first tier is connected
via WLAN to the second tier in which there is an edge
server. Finally, in the top tier, the cloud server is placed.
Users move according to a nomadic mobility model [31]
in which a user dwells for a random amount of time in
the vicinity of its WLAN/Edge server and then moves to
another place in the vicinity of another edge server based
on the attractiveness level of the places. If one place’s
attractiveness level is higher, a user spends more time in
that location.

When a mobile device takes the offloading decision, the
task is first sent to the orchestrator, which is responsible
for the management of the offloaded tasks since it is aware

5

of the recent conditions in the network and edge servers.
Thus, depending on the network conditions and task re-
quirements, the orchestrator forwards the task either to an
edge server or the cloud server. If the task is successfully
processed in the edge or the cloud considering the applica-
tion requirements in terms of the maximum service time, it
means that the orchestration is successful. Otherwise, it is
considered as a failure.

3.2 Problem Formulation

In this study, our goal is to minimize the failure rate of the
offloaded tasks which is the equivalent of maximizing the
success rate of the offloaded tasks. Our objective function
can be defined as

max 𝑧 =

𝑀∑︁
𝑖=1

𝑄∑︁
𝑞=1

𝑢𝑖𝑞𝛼𝑞 , (1)

where

𝛼𝑞 =

{
0, if 𝑡𝑞 > 𝑡𝑆𝐿𝐴

1, otherwise
(2)

subject to

𝑦𝑖𝑞 +
𝑁∑︁
𝑗=1

𝑥𝑖 𝑗𝑞 = 1, ∀𝑖, 𝑞 (Constraint 1)

𝑀∑︁
𝑖=1

𝑄∑︁
𝑞=1

𝑢𝑖𝑞𝑤𝑞𝑥𝑖 𝑗𝑞 ≤ 𝐶 𝑗 ∀ 𝑗 (Constraint 2)

where 𝑢𝑖𝑞 ∈ {0, 1}, 𝑦𝑖𝑞 ∈ {0, 1}, 𝑥𝑖 𝑗𝑞 ∈ {0, 1}, 𝑤𝑞 is the size
of the task 𝑞, 𝑡𝑞 is the total delay of the offloaded task 𝑞,
𝑡𝑆𝐿𝐴 is the maximum allowed latency based on the SLA of
the task . We define 𝑡𝑞 as

𝑡𝑞 = 𝑡𝑠𝑒𝑟 𝑣𝑖𝑐𝑒 + 𝑡𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (3)

where 𝑡𝑠𝑒𝑟 𝑣𝑖𝑐𝑒 is the service time of the corresponding
edge or cloud server, and 𝑡𝑛𝑒𝑡𝑤𝑜𝑟𝑘 is defined as

𝑡𝑛𝑒𝑡𝑤𝑜𝑟𝑘 =

{
2𝑡𝑤𝑎𝑛, if 𝑦𝑖𝑞 = 1 ∀𝑖, 𝑞
2𝑡𝑚𝑎𝑛, if 𝑦𝑖𝑞 = 0 ∀𝑖, 𝑞

(4)

In Equation 1, we use 𝛼𝑞 as an indicator which shows
whether the offloaded task is successfully completed or
not. If SLA requirements are met based on the offloading
decision, 𝛼𝑞 equals to one (i.e., offloading is successful for
that task) as shown in Equation 2. Otherwise, it is zero as
the task fails.

Constraint 1 represents that a single task for each user
can be offloaded to either the cloud server or one of the
edge servers. Moreover, Constraint 2 guarantees that the
load of offloaded tasks cannot exceed the capacity of the
corresponding edge server.

While calculating the MAN and WAN delays, we use
the 𝑀/𝑀/1 queue model which takes the current network
conditions and the requirements of the offloaded task/app
type into consideration. If needed, other utilization depen-
dent models can easily be incorporated in the delay models.

4 DEEPEDGE

Mobile networks are one of the most dynamic and het-
erogeneous environments since they consist of multiple
edge servers, different services, tasks, technologies, and user
profiles. Therefore, deciding where user tasks are offloaded
to is a critical and NP-hard problem [5]. In our design, we
assume that a mobile device has already taken the offload-
ing decision. The main goal of our design is to minimize
the failed task rate in the network by using the autonomous
policy of DRL, even in the heavily-loaded scenarios.

4.1 Challenges of Applying DRL on Edge
Even though task orchestration requires a corresponding
policy suitable for the concept of DRL, ensuring essential
points in a real-time and dynamic environment is a compli-
cated operation. There are four challenges to apply DRL in
the edge computing environment:
• Since tasks are generated by multiple users from mul-

tiple applications, guaranteeing the Markov property is
a crucial challenge. The transition from one state to its
next state should display the change of the environment
for the given action that is fundamental for MDP. There-
fore, the state representation must be carefully defined
in order to apply DRL on edge accurately.

• The delayed action effect is another imperative chal-
lenge due to the fact that the performed action may
not immediately affect the network attributes which de-
scribe a state for DRL. As a result, there is an important
risk that a state and its next state would be the same.
An action in MDP must cause a change for its next state
like in Atari games [32] in order to carry out DRL.

• The third important challenge is the stochastic envi-
ronment because of different application tasks. Since
task orchestration is modeled considering that each
incoming task indicates a state in the system, applying
an action would not assure that the next state is the
expected state for the edge environment.

• The last challenge for this study is that we would like
to implement the DRL agent which can learn online
rather than using historical data. Related with the de-
layed action effect, online learning also needs a suitable
architecture to implement.

4.2 Providing MDP on Edge
The DRL is based on the MDP which ensures the mathemat-
ical framework to model decision making systems. MDP is
formally defined as a 4-tuple < 𝑆, 𝐴, 𝑃, 𝑅 > where
• 𝑆 is the set of all valid states where 𝑠 ∈ 𝑆
• 𝐴 is the set of all valid actions where 𝑎 ∈ 𝐴

• 𝑃 : 𝑆𝑥𝐴 → 𝑃(𝑆) is the state transition probability
function that provides the probabilty of 𝑃(𝑠𝑡 , 𝑠𝑡+1) =

𝑃𝑟 (𝑠𝑡+1 = 𝑠′ | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) in which taking the action
𝑎 as the decision at time 𝑡 change the current state 𝑠𝑡 to
𝑠𝑡+1.

• 𝑅 : 𝑆𝑥𝐴𝑥𝑆 → 𝑅 is the reward function that defines the
reward 𝑟 for the taken action 𝑎 at time 𝑡 considering the
state transition such that 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1).

The agent takes an action based on the observation it
gets from the environment so that it can apply a deter-
ministic policy 𝜋 for a given state which is defined as

6

State st

Network Attributes

App Attributes

Edge Server 1
Edge Server 2

Edge Server N

..

.

Edge Server 4

State st+1

Network Attributes

App Attributes

Edge Server 1
Edge Server 2

Edge Server N

..

.

Edge Server 4

Time

Load: 70.2% Load: 70.2%

Action: Send task to Edge Server 4

An
ot

he
r t

as
k

is

co
m

pl
et

ed

in
 E

dg
e

Se
rv

er
 4

of Offloaded Tasks to WLAN: E

of Offloaded Tasks to MAN: F

of Offloaded Tasks to WAN: G

of Active MAN Tasks: J

of Offloaded Tasks to WLAN: E

of Offloaded Tasks to MAN: F+1

of Offloaded Tasks to WAN: G

of Active MAN Tasks: J

Fig. 2: Because of the characteristics of the edge computing environment, two consecutive states would be the same
regarding the application and network attributes that define the states. This is impractical for DRL since the Markov
property may not be ensured. Therefore, we use four supplemental attributes for each state to identify them uniquely.

𝜋 (𝑎 | 𝑠) = 𝑃 (𝑎𝑡 = 𝑎 | 𝑠𝑡 = 𝑠). For the popular implementa-
tions of DRL such as Q-Learning, DQN, and DDQN, MDP
must be provided for the environment so that the agent can
develop a successful policy for its decisions.

MDP is essentially based on the Markov property in
which the next state depends only on the current state. In
other words, 𝑠𝑡+1 depends on 𝑠𝑡 ; it is not determined by 𝑠𝑡−1,
𝑠𝑡−2, ... , 𝑠1, 𝑠0. Markov property is formulated as in Equation
5. If {𝑠0, 𝑠1, 𝑠2, ...} is a sequence of discrete random variables,
then the sequence is a Markov chain if it satisfies the Markov
property.

𝑃(𝑠𝑡+1 = 𝑠 | 𝑠𝑡 , 𝑠𝑡−1, 𝑠𝑡−2, ..., 𝑠1, 𝑠0) = 𝑃(𝑠𝑡+1 = 𝑠 | 𝑠𝑡) (5)

Since the edge computing environment is real-time and
extremely dynamic, ensuring Markov property is not a
trivial task. As shown in Figure 2, the orchestrator may send
the offloaded task to the Edge Server 4 regarding its load
which is 70.2% at 𝑠𝑡 . However, if there is another similar task
for which the edge server has allocated its resources and it is
completed before the arrival of the offloaded task, the load
of the edge server would not change at 𝑠𝑡+1. Moreover, if the
𝑠𝑡+1 consists of the same application attributes and network
attributes, the Markov property cannot be satisfied. Note
that this scenario for the load of an edge server is also valid
for the load of MAN. This is impractical for DRL that works
with the unique states which provide the Markov chain.

In order to solve this problem, we add four supplemental
attributes, which are described in Section 4.3 along with
other attributes, for each state:
• Number of Offloaded Tasks to WLAN
• Number of Offloaded Tasks to MAN
• Number of Offloaded Tasks to WAN
• Number of Active MAN Tasks
By adding them, we can identify each state uniquely

throughout the edge computing environment so that we can
satisfy the Markov property for the implementation of DRL.

4.3 State Representation

In DRL, a state is defined when the agent takes an ac-
tion. Considering our system architecture, the agent is the
orchestrator that takes action when a task comes to the
orchestrator in order to be offloaded to the corresponding
edge or the cloud server. Note that since each incoming
task is produced by a mobile device by following a Poisson
process, the time between consecutive states is exponen-
tially distributed. Thus, we define a state 𝑠 at which the
orchestrator makes a decision for the task.

There are two fundamental feature sets for the state
representation in our architecture due to different applica-
tion requirements: app attributes and network attributes.
App attributes indicate the individual requirements of the
applications in order to ensure their QoS and to identify the
corresponding state. On the other hand, network attributes
describe the current condition of the network. Thus, a transi-
tion between two consecutive states in a stochastic environ-
ment would be as in Figure 3 and the transition probability
𝑃𝑠𝑠′ is defined as 𝑃𝑠𝑠′ = 𝑃 (𝑠𝑡+1 = 𝑠′ | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎). How-
ever, even though the taken action changes the environment
through four supplemental attributes we add, the action
does not fully determine the next state due to the Poisson
fashion of the different applications run by multiple users.

In this study, we use ten features in which three of them
indicate app attributes, while seven of them are related to
the network condition. On the other hand, since the number
of edge servers varies based on the network configuration,
the attribute that shows the current load of an edge server
depends on the environment. The attributes of a state are
given in Table 4.

For the definition of a state we use WanBw, Man-
Delay, NumberOfTaskToWLAN, NumberOfTaskToMAN, Num-
berOfTaskToWAN, NumberOfActiveMANT, and LoadOfEdge-
Server[N] as network attributes. On the other hand, TaskRe-

7

State st State st+1

Action: Edge Server 2

WanBw: 0.99

ManDelay: 7.51x10-7

TaskReqCapacity: 0.0075

WlanID: 1

DelaySensitivity: 0.9

NumberOfTaskToWLAN: 0

NumberOfTaskToMAN: 0

NumberOfTaskToWAN: 0

NumberOfActiveMANT: 0

LoadOfEdgeServer[1]: 1.0

LoadOfEdgeServer[2]: 1.0

WanBw: 0.99

ManDelay: 7.51x10-7

TaskReqCapacity: 0.0025

WlanID: 1

DelaySensitivity: 0.7

NumberOfTaskToWLAN: 0

NumberOfTaskToMAN: 1

NumberOfTaskToWAN: 0

NumberOfActiveMANT: 0

LoadOfEdgeServer[1]: 1.0

LoadOfEdgeServer[2]: 1.0

Fig. 3: The state transition in an edge computing environ-
ment consisting of two edge servers.

qCapacity, DelaySensitivity, and WlanID attributes are used
for tasks to indicate their QoS requirements and location of
offloading. WanBw, ManDelay, and LoadOfEdgeServer refers
to the recent conditions of the WAN bandwidth, MAN
delay, and load of the edge servers, respectively. Note that,
LoadOfEdgeServer[N] includes the information of all of the
edge servers in the network so that the 𝑁 is the variable
that represents the number of edge servers. As a result, for
example, if there are N edge servers in the network, the cor-
responding state includes 6 + 𝑁 network related attributes.
Hence, along with the application related attributes, the
state consists of 9 + 𝑁 attributes in total. We demonstrate an
example state transition in Figure 3 considering the scenario
in which there are two edge servers in the environment.

The other network attributes including NumberOf-
TaskToWLAN, NumberOfTaskToMAN, NumberOfTaskToWAN,
NumberOfActiveMANT are self-explanatory. We increase cor-
responding values if the tasks are offloaded through WLAN,
MAN, and WAN, respectively. Considering application at-
tributes on the other hand, TaskReqCapacity indicates the
required capacity for the offloaded task regarding edge
servers. DelaySensitivity refers to the level of application
tolerance to delay so that corresponding action should select
WLAN edge server, MAN edge server, or the cloud server
wisely. Finally, WlanID specifies from where the task is
offloaded so that the agent can identify which edge server
is local for the user.

4.4 Action Space

The actions of an orchestrator are limited considering the
number of edge servers in the network and the cloud
server. Therefore, if there are 𝑁 edge servers, the orches-
trator selects one of the 𝑁 + 1 decisions as an action
𝑎𝑡 ∈ {𝑎1, 𝑎2, ..., 𝑎𝑁+1}.

The actions are taken by the neural network part of the
orchestrator regarding DRL. When an offloaded task comes
to the orchestrator, the current state of the environment is
given to the neural network as an input for action. The
corresponding generic neural network model is shown in
Figure 4. Considering the 𝑁 edge servers in the network,
the input features are defined regarding the state of the
environment, which is 9+𝑁 . Based on the network condition

Hidden
Layer Z

..

.

Z
neurons

Hidden
Layer 2

Hidden
Layer 1

..

.

Edge 1

Edge 2

Cloud

..

.

..

.

Input
Layer

Output
Layer

..

.
..
.

H
neurons

L
neurons

N+1
classes

9 + N
Features

...

Edge N

Fig. 4: The generic deep neural network model for
DeepEdge.

and the expected number of users, there would be several
hidden layers that consist of multiple neurons. Since the
orchestrator determines the corresponding offloading deci-
sion among 𝑁 + 1 possible choices, as 𝑎𝑡 ∈ {𝑎1, 𝑎2, ..., 𝑎𝑁+1},
the size of the output layer is equal to the number of edge
servers and the cloud server.

4.5 Reward Mechanism
As a DRL agent, the long-term goal of the orchestrator
is to minimize the failed task rate by making successful
offloading decisions. In other words, the orchestrator finds
a policy 𝜋(𝑠𝑡) that maximizes the expected sum of future
rewards at 𝑠𝑡 by taking the corresponding action 𝑎𝑡 to the
𝑠𝑡+1, such that

𝑅𝑡 =

∞∑︁
𝑖=𝑡

𝛾 ∗ 𝑅(𝑠𝑖 , 𝑠𝑖+1) (6)

where 𝛾 ∈ [0, 1] is the discount factor to indicate the
importance of the immediate or long-term rewards, and 𝑅𝑡

TABLE 4: Attributes of The State

Attribute Description
WanBw Remaining WAN bandwidth of the net-

work.
ManDelay MAN delay of the network.
TaskReqCapacity Required capacity of a VM to process

the given task.
WlanID Wlan ID of mobile device generating the

given task.
DelaySensitivity Indicating whether the task is delay in-

tolerant or not. Its value is between 0
and 1.

NumberOfTaskToWLAN The number of tasks offloaded to
WLAN.

NumberOfTaskToMAN The number of tasks offloaded to MAN.
NumberOfTaskToWAN The number of tasks offloaded to WAN.
NumberOfActiveMANT The number of tasks offloaded to MAN

but have not arrived their destinations
yet.

LoadOfEdgeServer[N] The active load of an edge server. There
would be N number of edge server in
the network.

8

is the long-term reward. We define the reward for each state
transition so that if the offloaded task is successfully com-
pleted, we assign 𝑅(𝑠𝑡 , 𝑠𝑡+1) = 1, otherwise 𝑅(𝑠𝑡 , 𝑠𝑡+1) = −1.

Our motivation for this reward mechanism is based on
our objective function presented in Equation 1. Since our
objective function maximizes the number of successfully
offloaded tasks, we formulate the reward function regarding
the individual success so that the cumulative reward would
reflect the objective function. It is important to note that
if our objective function consisted of the minimization of
the service time or processing time, the reward mechanism
would be different for our system. Moreover, since the or-
chestrator treats each task equally, it takes the same reward
for each offloaded task depending on its decision. We do not
apply any prioritization for different applications. However,
if needed this could easily be employed.

4.6 Applying DDQN on Edge
In order to achieve its objective function of maximizing
the expected sum of future rewards, a DRL agent should
choose actions under a deterministic policy 𝜋(𝑠𝑡) that also
maximizes the action-value function, 𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡), which is
also named as the Q-function. Therefore, under a policy 𝜋,
the value of an action 𝑎𝑡 in a state 𝑠𝑡 is

𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡) = E
[
𝑅𝑡 | 𝑠𝑖 = 𝑠, 𝑎𝑖 = 𝑎

]
(7)

, where 𝑅𝑡 is defined in Equation 6. As a result, an optimal
policy is to select the highest valued action in each state such
that

𝜋(𝑠𝑡) = 𝑎𝑟𝑔 max
𝑎′
(𝑄(𝑠𝑡 , 𝑎′)) (8)

, where 𝑎′ indicates the set of all possible actions.
In the enhanced DQN algorithm [32], there is a target

network along with the experience replay in addition to the
online network to carry out a smoother learning process.
The target network has the same configuration as the online
network in terms of the network size and number of the
hidden layers. The only difference between them is the
network parameters. The online network parameters, 𝜃𝑡 , are
copied to the target network having parameters 𝜃−𝑡 for each
𝜏 step, and both of them are fixed in other steps. Thus, the
target in DQN is determined as

𝑧𝑡 = 𝑅𝑎𝑡 (𝑠𝑡 , 𝑠𝑡+1) + 𝛾 ∗𝑄(𝑠𝑡+1, 𝑎𝑟𝑔 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′; 𝜃−𝑡); 𝜃−𝑡) (9)

However, as investigated in [33], the DQN algorithm
causes overestimation of the target values since the target
network is used for both selecting and evaluating the action.
Thus, in this study, we use the DDQN algorithm [33] in
which the online network is used for the selection of the
action, and the target network is exploited for evaluating
the action as follows

𝑧𝑡 = 𝑅𝑎𝑡 (𝑠𝑡 , 𝑠𝑡+1) + 𝛾 ∗𝑄(𝑠𝑡+1, 𝑎𝑟𝑔 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′; 𝜃𝑡); 𝜃−𝑡) (10)

Note that the learning objective of the orchestrator is
to minimize the temporal difference error, 𝛿𝑡 , of 𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡)
regarding the target value 𝑧𝑡 :

..

.

..

.

..

.

..

.

..

.
..
.

... Action

Orchestrator

Environment

State Next State Action Value IsDone

Memory Items

State st-1

..

.

State st

State st & Task

W
he

n
th

e
re

su
lt

of
 ta

sk
 a

t S
ta

te
 s

t is
 re

ad
y

C
om

pl
et

ed

M
em

or
y

Ite
m

s

Fig. 5: 5-tuple memory item structure to feed the DDQN
algorithm.

𝛿𝑡 =| 𝑄(𝑠𝑡 , 𝑎𝑡) − 𝑧𝑡 | (11)

4.7 The Delayed Action Effect

In DRL, the agent gets the next state information from the
environment immediately and updates its parameters based
on the result of the value function, which is the reward.
Since the next state information is a direct result of its action,
the agent updates its parameters accurately. However, in our
problem, because of the 𝑡𝑠𝑒𝑟 𝑣𝑖𝑐𝑒, 𝑡𝑚𝑎𝑛, and 𝑡𝑤𝑎𝑛, the agent
cannot immediately get the next state information which is
the outcome of its action. This is an important issue since
the agent cannot learn the dynamics of the environment as
it cannot observe the effect of its actions instantaneously. To
solve this delayed action effect, we adapt DDQN into our
environment as shown in Figure 5.

In our solution, we use memory items each of which
holds 5-tuple information including 𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛,
𝑣𝑎𝑙𝑢𝑒, and 𝑖𝑠𝐷𝑜𝑛𝑒 elements. These elements are essential for
the DDQN algorithm in order to feed the agent’s memory
considering the experience replay and the neural network.
After an action is taken, traditionally, they are given to the
agent immediately. Since we cannot provide the effect of
the action immediately due to our environment, we first
insert the 𝑠𝑡𝑎𝑡𝑒 and 𝑎𝑐𝑡𝑖𝑜𝑛 elements of the current 𝑡𝑎𝑠𝑘 into
a memory item. Note that since each state is also the next
state of its previous state, except for the very first state of
the system, we also insert the 𝑠𝑡𝑎𝑡𝑒 into the memory item
of the previous task. By using the same fashion, the 𝑛𝑒𝑥𝑡

𝑠𝑡𝑎𝑡𝑒 is filled for our current 𝑡𝑎𝑠𝑘 . Afterwards, when the
result of the current 𝑡𝑎𝑠𝑘 is available in the environment,
we place the value, regarding the reward mechanism, into

9

the memory item. Moreover, if the task is the last task in
the system, we set the 𝑖𝑠𝐷𝑜𝑛𝑒 element as true. Note that
indicating the last element is also imperative in the DDQN
algorithm in order to ensure MDP. Finally, if all elements
of a memory item are set, it is sent to the memory of the
agent considering the experience replay which is used to
feed the online network for training. Thus, we can perform
online training by overcoming the delayed action effect. We
also give the details of our scheme in Algorithm 1 and 2,
respectively. Since DDQN is a well-known algorithm, we
only give the steps of our approach until DDQN is fed by a
memory item in Algorithm 2.

In Algorithm 1, our input is the task and our goal, the
output, is the creation of the memory item considering the
delayed action effect. To this end, we first create an empty
memory item in the first line and get the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒. When
the agent takes the action, we store this information in the
𝑎𝑐𝑡𝑖𝑜𝑛 variable and increase the corresponding values from
line 4 to 10 considering to where the task is offloaded. Those
values are used as features for the next state. Afterwards,
from line 11 to 16, we fill the memory item with the
corresponding values. Since we do not know the value and
the next state information, 𝑛𝑢𝑙𝑙 is assigned to those elements
initially. Next, we store the (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝑚𝑒𝑚𝑜𝑟𝑦𝐼𝑡𝑒𝑚) tu-
ple into the 𝑠𝑡𝑎𝑡𝑒𝑇𝑜𝑀𝑒𝑚𝐼𝑡𝑒𝑚 dictionary in order to change
the memory item when we obtain the result of the task. If
the current state is not the first state in the environment,
we set the next state element of the previous memory item
as the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒. Finally, we store the (𝑡𝑎𝑠𝑘, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒)
pair in the 𝑡𝑎𝑠𝑘𝑇𝑜𝑆𝑡𝑎𝑡𝑒𝑃𝑎𝑖𝑟 dictionary and then offload the
task to the destination based on the selected action.

In Algorithm 2, our input is the completed task and the
output is the completed memory item to feed the agent’s
memory. Hence, first, the reward is set based on the fail
or success condition of the offloaded task. Afterwards, the
corresponding state is obtained from the 𝑡𝑎𝑠𝑘𝑇𝑜𝑆𝑡𝑎𝑡𝑒𝑃𝑎𝑖𝑟

dictionary in line 6 in order to acquire the memory item
related to the state. Next, the 𝑣𝑎𝑙𝑢𝑒, and 𝑖𝑠𝐷𝑜𝑛𝑒 elements of
the memory item is set from line 7 to 12. Finally, if the next
state information is set, then the memory item is given to
the memory of the agent for the training.

5 PERFORMANCE EVALUATION

We carried out our experiments in the EdgeCloudSim [34]
simulator for the performance evaluation. Our scenario
consists of 14 locations, each of which operates an edge
server with equal capacity. We used different numbers
of mobile devices in the edge computing environment to
evaluate the performance of the algorithms under variable
load. Mobile devices run different applications including
augmented reality, pervasive health, image rendering, and
infotainment. Each application generates tasks that have
different characteristics based on their requirements given
in Table 5. Task interarrival time indicates the average task
generation rate. Delay sensitivity refers to an application’s
tolerance to latency. This value is high for delay-intolerant
applications such as video conferencing. VM utilization
species the percentage of processing resources required to
execute the related task.

Algorithm 1 Handling the incoming tasks considering the
delayed action effect

Require: 𝑡𝑎𝑠𝑘

Ensure: action 𝑎𝑡 and memory item of 𝑡𝑎𝑠𝑘
1: 𝑚𝐼𝑡𝑒𝑚 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑀𝑒𝑚𝑜𝑟𝑦𝐼𝑡𝑒𝑚()
2: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒 ← 𝐺𝑒𝑡𝑆𝑡𝑎𝑡𝑒()
3: 𝑎𝑐𝑡𝑖𝑜𝑛 ← 𝑎𝑔𝑒𝑛𝑡.𝑑𝑜𝐴𝑐𝑡𝑖𝑜𝑛(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒) // using online

network
4: if 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐸𝑑𝑔𝑒𝑆𝑒𝑟𝑣𝑒𝑟𝑂 𝑓𝑇ℎ𝑒𝑇𝑎𝑠𝑘 then
5: 𝑁𝑢𝑚𝑏𝑒𝑟𝑂 𝑓𝑇𝑎𝑠𝑘𝑇𝑜𝑊𝐿𝐴𝑁++
6: else if 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑂𝑡ℎ𝑒𝑟𝐸𝑑𝑔𝑒𝑆𝑒𝑟𝑣𝑒𝑟 then
7: 𝑁𝑢𝑚𝑏𝑒𝑟𝑂 𝑓𝑇𝑎𝑠𝑘𝑇𝑜𝑀𝐴𝑁++
8: else
9: 𝑁𝑢𝑚𝑏𝑒𝑟𝑂 𝑓𝑇𝑎𝑠𝑘𝑇𝑜𝑊𝐴𝑁++

10: end if
11: 𝑚𝐼𝑡𝑒𝑚.𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒

12: 𝑚𝐼𝑡𝑒𝑚.𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒 ← 𝑛𝑢𝑙𝑙

13: 𝑚𝐼𝑡𝑒𝑚.𝑣𝑎𝑙𝑢𝑒 ← 𝑛𝑢𝑙𝑙

14: 𝑚𝐼𝑡𝑒𝑚.𝑎𝑐𝑡𝑖𝑜𝑛← 𝑎𝑐𝑡𝑖𝑜𝑛

15: 𝑚𝐼𝑡𝑒𝑚.𝑖𝑠𝐷𝑜𝑛𝑒 ← 𝑓 𝑎𝑙𝑠𝑒

16: 𝑠𝑡𝑎𝑡𝑒𝑇𝑜𝑀𝑒𝑚𝐼𝑡𝑒𝑚(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒.𝑖𝑑, 𝑚𝐼𝑡𝑒𝑚)
17: if 𝑠𝑡𝑎𝑡𝑒𝑇𝑜𝑀𝑒𝑚𝐼𝑡𝑒𝑚(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒.𝑖𝑑 − 1) ≠ 𝑛𝑢𝑙𝑙 then
18: 𝑝𝑟𝑒𝑣𝐼𝑡𝑒𝑚 ← 𝑠𝑡𝑎𝑡𝑒𝑇𝑜𝑀𝑒𝑚𝐼𝑡𝑒𝑚(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒.𝑖𝑑 − 1)
19: 𝑝𝑟𝑒𝑣𝐼𝑡𝑒𝑚.𝑠𝑒𝑡𝑁𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒)
20: end if
21: 𝑡𝑎𝑠𝑘𝑇𝑜𝑆𝑡𝑎𝑡𝑒𝑃𝑎𝑖𝑟 (𝑡𝑎𝑠𝑘, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒)
22: 𝑂 𝑓 𝑓 𝑙𝑜𝑎𝑑𝑇𝑎𝑠𝑘𝑇𝑜𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑎𝑐𝑡𝑖𝑜𝑛, 𝑡𝑎𝑠𝑘)

Algorithm 2 Handling completed tasks and memory items

Require: A completed 𝑡𝑎𝑠𝑘

Ensure: training of neural networks
1: if 𝑡𝑎𝑠𝑘 = 𝑖𝑠𝐹𝑎𝑖𝑙𝑒𝑑 then
2: 𝑟𝑒𝑤𝑎𝑟𝑑 ← −1
3: else
4: 𝑟𝑒𝑤𝑎𝑟𝑑 ← 1
5: end if
6: 𝑠𝑡𝑎𝑡𝑒 ← 𝑡𝑎𝑠𝑘𝑇𝑜𝑆𝑡𝑎𝑡𝑒𝑃𝑎𝑖𝑟 (𝑡𝑎𝑠𝑘)
7: if 𝑠𝑡𝑎𝑡𝑒𝑇𝑜𝑀𝑒𝑚𝐼𝑡𝑒𝑚(𝑠𝑡𝑎𝑡𝑒.𝑖𝑑) ≠ 𝑛𝑢𝑙𝑙 then
8: 𝑚𝑒𝑚𝐼𝑡𝑒𝑚 ← 𝑠𝑡𝑎𝑡𝑒𝑇𝑜𝑀𝑒𝑚𝐼𝑡𝑒𝑚(𝑠𝑡𝑎𝑡𝑒.𝑖𝑑)
9: 𝑚𝑒𝑚𝐼𝑡𝑒𝑚.𝑟𝑒𝑤𝑎𝑟𝑑 ← 𝑟𝑒𝑤𝑎𝑟𝑑

10: if 𝑡𝑎𝑠𝑘.𝑖𝑑 = 75000 then
11: 𝑚𝑒𝑚𝐼𝑡𝑒𝑚.𝑖𝑠𝐷𝑜𝑛𝑒 ← 𝑡𝑟𝑢𝑒

12: end if
13: if 𝑚𝑒𝑚𝐼𝑡𝑒𝑚.𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒 ≠ 𝑛𝑢𝑙𝑙 then
14: 𝑎𝑔𝑒𝑛𝑡.𝐷𝐷𝑄𝑁 (𝑚𝑒𝑚𝐼𝑡𝑒𝑚) //which save the memory

item into the agent’s memory for the experience
replay

15: end if
16: end if

5.1 Configuration

5.1.1 Simulator Parameters

We deployed 14 edge servers in the network each of which
has 8 VMs, and one cloud server that has 4 VMs. While
the computational resource capacity of each VM in an edge
server is 10 billion instructions per second (GIPS), a VM in
the cloud server has 100 GIPS capacity. For each experiment,
the number of mobile devices in the network ranged from

10

TABLE 5: Application Properties in the Simulator

Property Augment.
Reality

Perv.
Health

Image
Rend.

Infot.
App

Task Interarrival 2 sec 3 sec 20 sec 7 sec
Delay Sensitivity 0.9 0.7 0.1 0.3
Data Up-
load/Download
(KB)

1500/25 20/1250 2500/200 25/1000

VM Utilization on
Edge (%)

6 2 30 10

VM Utilization on
Cloud (%)

0.6 0.2 3 1

Usage Percentage (%) 30 20 20 30

200 to 2400. The average number of offloaded tasks is based
on both the number of mobile devices and the average task
generation rates given in Table 5. Thus, the expected number
of generated tasks would be 6500 and 80000 for 200 and 2400
mobile users, respectively.

We repeated our experiments 40 times with different
random seeds. The duration of each experiment in simulator
time was five minutes. Since we want to conduct a valid
comparison with the competitors, we used the empirical
results for the WAN and WLAN delays explained in [13].
These values can also be observed in EdgeCloudSim. For
MAN delay, we used the M/M/1 queueing model imple-
mentation of EdgeCloudSim with an additional propagation
delay of 5 ms.

5.1.2 Training the Agent
Since we used 14 edge servers in the network, the output
layer of the neural networks regarding online and target
networks consisted of 15 nodes with respect to our generic
model shown in Figure 4. Our final model includes two
hidden layers each of which consists of 128 neurons. We
applied the ReLU activation function for each neuron in
the input and hidden layers. On the other hand, the linear
activation function was used for the output layer. We used
Stochastic Gradient Descent (SGD) for the optimization of
the model. Other important hyperparameters for DDQN
are given in Table 6. In order to define hyperparameters
for the 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓 𝑎𝑐𝑡𝑜𝑟 , 𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒, and 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑢𝑝𝑑𝑎𝑡𝑒 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, we used random search regarding our
experience in the domain. On the other hand, for the
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛, 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑓 𝑎𝑐𝑡𝑜𝑟, 𝑓 𝑖𝑛𝑎𝑙 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,
and 𝑟𝑒𝑝𝑙𝑎𝑦 𝑚𝑒𝑚𝑜𝑟𝑦 𝑠𝑖𝑧𝑒, we used well-known values from
the literature.

Since we use the same agent for the simulations of the
different numbers of users, training should provide a robust
online neural network considering the different dynamics.
Therefore, there are two options: (1) we can train the agent
for each network condition regarding 200 to 2400 users,
or (2) we can train the agent only in the scenario of 2400
users which theoretically includes the all possible states of
the other scenarios. Due to prolonged execution times, we
opted for the second option. To give a numeric comparison,
completion of a single episode took over three hours for the
first option whereas it took around 0.3 hours for the second
option. It took 101 episodes (over 30 hours) to train the agent
and converge to the range of 10% - 15% failed task rate.

Figure 6 shows the rewards and percentage of failed
tasks for four different learning rates during the training of

TABLE 6: Hyperparameters and Their Values

Hyperparameter Value
Learning Rate 0.0001
Discount Factor 0.8
Initial Exploration 1
Exploration Factor 0.99
Final Exploration 0.1
Replay Memory Size 1000000
Minibatch Size 4
Target Network Update Frequency 10

the agent. Since the learning rate is a crucial hyperparameter
to train a neural network, we selected rates based on a range
from 0.00001 to 0.001. Small learning rates cause a slow
learning process, which is reflected in the case of 0.00001.
Therefore, as shown in Figure 6, the reward converges to
its maximum value after episode 40 for this learning rate
while other learning rates result in the same reward range
after episode 20. On the other hand, increasing the learning
rate does not affect the speed of the learning process in
the case of 0.0001, 0.0005, and 0.001. The learning rate of
0.001 gives poor results after episode 60 because of the
exploding gradient problem which is a result of both the
linear activation function in the output layer and the neural
network architecture including the number of layers and
nodes. The exploding gradient problem causes extremely
high weights in the neural network and therefore the model
cannot learn anymore. It is also an indicator that the learning
rate must be lowered. Hence, in our training phase, we
focused on the other three learning rates considering 0.001
as the upper bound. Finally, we selected the final model
which is trained by the learning rate of 0.0001 since it is
the most successful regarding the total reward. The learning
rates 0.0005 and 0.00001 are not as successful since they
cannot exceed local optima due to their smaller values.

On the other hand, considering the rewards in the train-
ing phase, the upper bound is 75000 on average due to the
total number of tasks for the scenario of 2400 mobile users.
Similarly, the lower bound for rewards is -75000. Since we
used the DDQN algorithm for the learning, the oscillation
between episodes is smoother so that it is limited between
rewards of 55000 and 45000. This is important since the time
to converge would be higher in the traditional DQN algo-
rithm as shown in [33]. As a result, since the corresponding
rewards do not significantly change, we choose our final
model after the 100th episode.

5.1.3 Competitors
We evaluated the performance of DeepEdge considering our
primary goal, which is minimizing the failed tasks. Hence,
we applied four different approaches for the orchestration
that are used in [13] in order to examine the performance
of the DeepEdge orchestrator appropriately. In these ap-
proaches, the network based method first investigates the
WAN bandwidth, which is initially 20 Mbps for each edge
server. Afterwards, if the bandwidth is above the predefined
threshold which is 6 Mbps, it forwards the task to the cloud.
Otherwise, the task is offloaded to one of the edge servers
that have the capacity to complete the task. On the other
hand, the utilization based approach checks the utilization
of edge servers. If the total utilization of the edge servers

11

20 40 60 80 100
Episode

-60000

-40000

-20000

0

20000

40000

60000
R

ew
ar

d
10%

20%

30%

40%

50%

60%

70%

80%

90%

P
er

ce
nt

ag
e

of
 F

ai
le

d
T

as
ks

lr=0.0001
lr=0.0005
lr=0.00001
lr=0.001

Fig. 6: Change of the failed task rate over episodes for the
scenario of 2400 mobile users.

is under 80%, the task is offloaded to one of the edge
servers in the network. However, if the total utilization of
edge servers is higher than 80%, the task is offloaded to the
cloud. This threshold value assignment is based on a set of
exploratory simulation experiments with different parame-
ters. According to the simulation results, the best values for
minimum WAN bandwidth and maximum CPU utilization
are observed as 6 Mbps and 80%, respectively. Apart from
the results, the candidate threshold values were 12, 8, 6, 3
Mbps and 90, 80, 70, 60 percent for the minimum WAN
bandwidth and the maximum CPU utilization, respectively.
The hybrid approach is a joint method of the network and
utilization based techniques. Lastly, we used the fuzzy based
approach that is implemented in [13] as the main competitor.
We used the same input parameters in this study for the
fuzzy logic process in order to perform a valid comparison.

5.2 Experiments
5.2.1 Overall Results
We first examined the overall performance of DeepEdge in
terms of the percentage of failed tasks. As shown in Figure
7, the performance of all approaches is similar until 1600
mobile devices in the network. However, as the load builds
up from 1600 to 2000 mobile devices, the accuracies of hybrid
and utilization based approaches decrease. Especially when
the number of mobile devices is higher than 1800, DeepEdge
outperforms all other approaches. Considering the fact that
the competitors are based on heuristic methods, and fuzzy
logic has 81 hand-crafted rules, it is a notable achievement
that the agent explored the environment on its own and
created the corresponding rules.

We also analyzed how DeepEdge efficiently uses net-
work and edge resources under high load. Figure 8 shows
that DeepEdge utilizes the resources in the network more
efficiently than the other approaches, especially after 2000
users. This result is the effect of its accurate decisions for the
offloaded tasks in the network considering the conditions
of the edge servers and network bandwidth in long term.
Since the decision of other approaches may cause congestion
on the WAN or MAN, they cannot utilize computational

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Number of Mobile Devices

0

5

10

15

20

25

30

35

40

45

Fa
ile

d
T

as
ks

 (
%

)

DeepEdge
Fuzzy Based
Network Based
Utilization Based
Hybrid

Fig. 7: The percentage of failed tasks

resources well for the heavily-loaded cases. Thus, there is
a ceiling effect in heavily-loaded cases since the overload
on the network due to their inappropriate policies causes
underutilized VMs on servers.

Next, we examined the overall service time for our
proposed approach considering the network load in terms
of tasks. Figure 9 exposes that the service time of DeepEdge
is higher than the other approaches, particularly for the
high number of tasks. Actually, this is not surprising since
our objective function in Equation 1 is that maximizing
the success rate of the offloaded tasks, not minimizing the
service time. Due to we design the reward mechanism based
on our objective function, DeepEdge sacrifices the service
time to maximize the cumulative reward. On the other hand,
the cause of this effect can also be seen in Figure 10 more
clearly in which we investigate the processing time on the
cloud. It can be observed that DeepEdge offloads the tasks to
the edge tier more when the number of tasks increase. This
choice increases the overall service time in the end since
some of the CPU-intensive apps’ tasks would be sent to the
edge rather than the cloud. However, it also provides the
minimization of the failure rate, which is the goal of the
DRL agent.

5.2.2 Application-based Results
Based on the overall results, we then investigated the perfor-
mance of DeepEdge for each application as shown in Figure
11. Considering the augmented reality, pervasive health,
and infotainment applications, the robustness of DeepEdge
manifests itself for the heavily-loaded environments. For the
augmented reality application, our orchestrator offloads the
generated tasks generally to the edge considering its delay
sensitivity, which is relatively higher. The same requirement
is also valid for the pervasive health application. However,
since both applications cause different loads on a VM,
our orchestrator also takes these properties into account
regarding the TaskReqCapacity feature. On the other hand,
the delay sensitivity of the infotainment application is low.
However, since its impact on VM utilization in terms of the

12

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Number of Mobile Devices

0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

(%
)

DeepEdge
Fuzzy Based
Network Based
Utilization Based
Hybrid

Fig. 8: Average VM utilization of edge and cloud servers
based on the number of mobile devices.

 0 20000 40000 60000 80000

Number of Tasks

0

1

2

3

4

5

6

Se
rv

ic
e

T
im

e
(s

ec
)

DeepEdge
Fuzzy Based
Network Based
Utilization Based
Hybrid

Fig. 9: The overall service time.

load is high, the orchestrator must choose edge or cloud for
the offloading wisely considering 𝑡𝑚𝑎𝑛 and 𝑡𝑤𝑎𝑛. The results
show that DeepEdge learned those requirements well. Thus,
its performance is better than its competitors.

On the other hand, even though DeepEdge outperforms
other approaches considering the different application types
which have diverse task requirements, it cannot provide
good results for the image rendering app. Therefore, in
order to investigate this result, we performed several exper-
iments using only the image rendering application. Hence,
we trained three DDQN agents as the orchestrator by using
the same hyperparameters given in Table 6. For these three
agents, we only changed task interarrival times of the image
rendering application for training. To this end, we applied
20 sec, as the original value, 10 sec, and 5 sec interarrival
times. Finally, we compared the performance of DeepEdge

 0 20000 40000 60000 80000

Number of Tasks

 0

0.05

 0.1

0.15

 0.2

0.25

Pr
oc

es
si

ng
 T

im
e

on
 C

lo
ud

 (
se

c)

DeepEdge
Fuzzy Based
Network Based
Utilization Based
Hybrid

Fig. 10: The processing time on cloud.

with the Fuzzy Based approach as it gives the best perfor-
mance for the image rendering application shown in Figure
11c.

The results given in Figure 12 show that DeepEdge
outperforms the Fuzzy Based approach when the task in-
terarrival time is 5 sec. On the other hand, there is no
significant difference between the performance of 10 sec
and 20 sec interarrival times. Thus, apart from the results in
Figure 12, the reason that DeepEdge is not as successful for
the image rendering app after 1800 users can be concluded
by examining Table 5. Since the average number of arriving
image rendering tasks is 10, 6.66, and 2.85 times lower
than the other applications respectively, states related to
the decision of the image rendering tasks are relatively less
for the training. Therefore, the agent could not learn the
specific details of the requirements of the image rendering
app. Furthermore, note that, since the image rendering tasks
constitute only 3% of the overall task offloading requests,
the overall performance of DeepEdge is still significantly
better for the heavily-loaded cases as shown in Figure 7.

6 CONCLUSION AND FUTURE WORK

We implemented a DRL based task orchestrator, namely
DeepEdge, for edge computing. Throughout the study, we
assumed that the offloading decision had been taken by
mobile devices, and the task must be offloaded to one of
the edge servers in the network or to the cloud. Due to the
different characteristics of each application, generated tasks
by mobile users must be handled by the orchestrator consid-
ering the application requirements and the current network
conditions. For this reason, we developed DeepEdge by ap-
plying the DDQN algorithm. Even though providing MDP
and coping with the delayed action effect are challenging
due to the real-time, and stochastic nature of the edge com-
puting environment, we successfully implemented a DRL
agent based on DDQN for the orchestration. We conducted
experiments in the EdgeCloudSim simulator by comparing
our model with other approaches in the literature. Our

13

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Number of Mobile Devices

0

5

10

15

20

25

30

35

40
Fa

ile
d

T
as

ks
 f

or
A

ug
m

en
te

d
R

ea
lit

y
A

pp
 (

%
)

DeepEdge
Fuzzy Based
Network Based
Utilization Based
Hybrid

(a) Augmented Reality App

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Number of Mobile Devices

0

10

20

30

40

50

60

Fa
ile

d
T

as
ks

 f
or

 P
er

va
si

ve
 H

ea
lth

 A
pp

 (
%

)

DeepEdge
Fuzzy Based
Network Based
Utilization Based
Hybrid

(b) Pervasive Health App

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Number of Mobile Devices

0

10

20

30

40

50

60

Fa
ile

d
T

as
ks

 f
or

Im
ag

e
R

en
de

ri
ng

 A
pp

 (
%

)

DeepEdge
Fuzzy Based
Network Based
Utilization Based
Hybrid

(c) Image Rendering App

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Number of Mobile Devices

0

5

10

15

20

25

30

35

40

45

50

Fa
ile

d
T

as
ks

 f
or

In
fo

ta
in

m
en

t A
pp

 (
%

)

DeepEdge
Fuzzy Based
Network Based
Utilization Based
Hybrid

(d) Infotainment App

Fig. 11: The change of failed tasks based on different application types. If the number of mobile devices increase in the
network, DeepEdge outperforms other approaches in terms of successfully completed tasks.

1600 1800 2000 2200 2400

Number of Mobile Devices

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Fa
ile

d
T

as
ks

 f
or

Im
ag

e
R

en
de

ri
ng

 A
pp

 (
%

)

DeepEdge
Fuzzy Based

(a) 20 sec task interarrival

1600 1800 2000 2200 2400

Number of Mobile Devices

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Fa
ile

d
T

as
ks

 f
or

Im
ag

e
R

en
de

ri
ng

 A
pp

 (
%

)

DeepEdge
Fuzzy Based

(b) 10 sec task interarrival

1600 1800 2000 2200 2400

Number of Mobile Devices

2

4

6

8

10

12

14

16

18

Fa
ile

d
T

as
ks

 f
or

Im
ag

e
R

en
de

ri
ng

 A
pp

 (
%

)

DeepEdge
Fuzzy Based

(c) 5 sec task interarrival

Fig. 12: The effect of the task interarrival time on the image-rendering application.

results showed that DeepEdge has the capability to perform
orchestration for different task types and outperforms its
competitors. On the one hand, DeepEdge improved the
average number of successfully completed tasks consid-
ering the different application requirements. On the other
hand, DeepEdge used VM resources more efficiently since
it had prevented the network bottlenecks so that offloaded
tasks could arrive at their destinations. To the best of our
knowledge, this is the first study in the domain of edge
computing that evaluates the performance of a DRL model
for different application types under various loads in terms
of the number of mobile users.

For future work, we want to expand our study by ap-
plying federated learning in order to deal with the different
task arrival rates of applications. To this end, we can per-
form the training in separate domains, and we can achieve
better results for the application types whose task creation
frequencies are relatively low in the network.

ACKNOWLEDGMENT

This work is supported by the Turkish Directorate of Strat-
egy and Budget under the TAM Project number 2007K12-
873.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[2] C. Wu, Z. Liu, D. Zhang, T. Yoshinaga, and Y. Ji, “Spatial intel-
ligence toward trustworthy vehicular iot,” IEEE Communications
Magazine, vol. 56, no. 10, pp. 22–27, 2018.

[3] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing
benefit from software-defined networking: A survey, use cases,
and future directions,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 4, pp. 2359–2391, 2017.

[4] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The
case for vm-based cloudlets in mobile computing,” IEEE pervasive
Computing, 2009.

[5] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, 2015.

[6] “Fog computing and the internet of things: Extend the cloud to
where the things are,” Cisco white paper, 2017.

[7] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[8] Y. Lin, M. Wang, X. Zhou, G. Ding, and S. Mao, “Dynamic
spectrum interaction of uav flight formation communication with
priority: A deep reinforcement learning approach,” IEEE Transac-
tions on Cognitive Communications and Networking, 2020.

[9] W. Lei, Y. Ye, and M. Xiao, “Deep reinforcement learning based
spectrum allocation in integrated access and backhaul networks,”
IEEE Transactions on Cognitive Communications and Networking,
2020.

14

[10] Y. Li, W. Zhang, C.-X. Wang, J. Sun, and Y. Liu, “Deep reinforce-
ment learning for dynamic spectrum sensing and aggregation in
multi-channel wireless networks,” IEEE Transactions on Cognitive
Communications and Networking, 2020.

[11] S. Gong, Y. Xie, J. Xu, D. Niyato, and Y.-C. Liang, “Deep reinforce-
ment learning for backscatter-aided data offloading in mobile edge
computing,” IEEE Network, vol. 34, no. 5, pp. 106–113, 2020.

[12] Z. Ning, P. Dong, X. Wang, J. J. Rodrigues, and F. Xia, “Deep rein-
forcement learning for vehicular edge computing: An intelligent
offloading system,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 6, pp. 1–24, 2019.

[13] C. Sonmez, A. Ozgovde, and C. Ersoy, “Fuzzy workload orchestra-
tion for edge computing,” IEEE Transactions on Network and Service
Management, 2019.

[14] S. Yu, X. Wang, and R. Langar, “Computation offloading for mobile
edge computing: A deep learning approach,” in 2017 IEEE 28th
Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC). IEEE, 2017, pp. 1–6.

[15] Z. Ali, L. Jiao, T. Baker, G. Abbas, Z. H. Abbas, and S. Khaf,
“A deep learning approach for energy efficient computational
offloading in mobile edge computing,” IEEE Access, vol. 7, pp.
149 623–149 633, 2019.

[16] Y. Liu, M. Xiao, S. Chen, F. Bai, J. Pan, and D. Zhang, “An
intelligent edge-chain enabled access control mechanism for iov,”
IEEE Internet of Things Journal, 2021.

[17] D. Zeng, L. Gu, S. Pan, J. Cai, and S. Guo, “Resource management
at the network edge: A deep reinforcement learning approach,”
IEEE Network, vol. 33, no. 3, pp. 26–33, 2019.

[18] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for mec,” in 2018
IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2018, pp. 1–6.

[19] A. Zhu, S. Guo, M. Ma, H. Feng, B. Liu, X. Su, M. Guo, and
Q. Jiang, “Computation offloading for workflow in mobile edge
computing based on deep q-learning,” in 2019 28th Wireless and
Optical Communications Conference (WOCC). IEEE, 2019, pp. 1–5.

[20] H. Meng, D. Chao, and Q. Guo, “Deep reinforcement learning
based task offloading algorithm for mobile-edge computing sys-
tems,” in Proceedings of the 2019 4th International Conference on
Mathematics and Artificial Intelligence, 2019, pp. 90–94.

[21] H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of
lightweight task offloading strategy for mobile edge computing
based on deep reinforcement learning,” Future Generation Com-
puter Systems, vol. 102, pp. 847–861, 2020.

[22] M. Tang and V. W. Wong, “Deep reinforcement learning for task
offloading in mobile edge computing systems,” IEEE Transactions
on Mobile Computing, 2020.

[23] P. Yan and S. Choudhury, “Optimizing mobile edge computing
multi-level task offloading via deep reinforcement learning,” in
ICC 2020-2020 IEEE International Conference on Communications
(ICC). IEEE, 2020, pp. 1–7.

[24] F. Carpio, A. Jukan, R. Sosa, and A. J. Ferrer, “Engineering a qos
provider mechanism for edge computing with deep reinforcement
learning,” in 2019 IEEE Global Communications Conference (GLOBE-
COM). IEEE, 2019, pp. 1–6.

[25] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
“Task offloading and resource allocation for mobile edge comput-
ing by deep reinforcement learning based on sarsa,” IEEE Access,
vol. 8, pp. 54 074–54 084, 2020.

[26] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Opti-
mized computation offloading performance in virtual edge com-
puting systems via deep reinforcement learning,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4005–4018, 2018.

[27] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-
edge computing networks,” IEEE Transactions on Mobile Comput-
ing, vol. 19, no. 11, pp. 2581–2593, 2019.

[28] C. Liu, F. Tang, Y. Hu, K. Li, Z. Tang, and K. Li, “Distributed
task migration optimization in mec by extending multi-agent deep
reinforcement learning approach,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 7, pp. 1603–1614, 2020.

[29] Z. Cao, P. Zhou, R. Li, S. Huang, and D. Wu, “Multiagent deep
reinforcement learning for joint multichannel access and task of-
floading of mobile-edge computing in industry 4.0,” IEEE Internet
of Things Journal, vol. 7, no. 7, pp. 6201–6213, 2020.

[30] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,

“Multi-agent actor-critic for mixed cooperative-competitive envi-
ronments,” arXiv preprint arXiv:1706.02275, 2017.

[31] A. Ribeiro and R. C. Sofia, “A survey on mobility models for
wireless networks,” 2011.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[33] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double q-learning,” in Thirtieth AAAI conference on
artificial intelligence, 2016.

[34] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An envi-
ronment for performance evaluation of edge computing systems,”
in 2017 Second International Conference on Fog and Mobile Edge
Computing (FMEC). IEEE, 2017, pp. 39–44.

Baris Yamansavacilar received his BS degree
in Computer Engineering from Yildiz Techni-
cal University, Istanbul, in 2015. He received
his MS degree in Computer Engineering from
Bogazici University, Istanbul, in 2019. Currently,
he is a PhD candidate and a research assis-
tant in Computer Engineering Department at
Bogazici University. His research interests in-
clude Edge Computing, Deep Reinforcement
Learning, Mobile Networks, Software-Defined
Networking, and Machine Learning.

Ahmet C. Baktir received his BS degree in
Computer Science&Engineering from Sabanci
University, Istanbul, in 2012. He received his
MA degree in Management Information Systems
from Bogazici University, Istanbul, in 2014. He
received a PhD in Computer Engineering in
Bogazici University. He is a researcher in Erics-
son Turkey. His research interests include Edge
Computing, network management and orches-
tration.

Cagatay Sonmez received his BS degree in
Computer Engineering from Dokuz Eylul Univer-
sity Izmir, in 2008. He received his MS and PhD
degrees in Computer Engineering from Bogazici
University, Istanbul, in 2012 and 2020. He has
been working at Arcelik Electronics as a techni-
cal leader in R&D Software Department, Istanbul
since 2008. His research interests include de-
sign and performance evaluation of communica-
tion protocols, cloud computing, edge computing
and IoT.

15

Atay Ozgovde received his BS and MS degrees
from Bogazici University, Istanbul, in 1995 and
1998, respectively. He worked as an R&D en-
gineer in NortelNetworks between 1998-2001.
He completed his PhD degree in the NETLAB
research group Bogazici University in 2009. He
worked as a full-time faculty at the Galatasaray
University Computer Engineering Department
between 2009-2021. Currently, he is an assistant
professor in the Computer Engineering Depart-
ment, Bogazici University. His research interests

include Computer Networks, Edge Computing, 5G and Beyond, Internet
of Things, Ambient Intelligence, SDN and mobile cloud computing. He
is a senior member of the IEEE.

Cem Ersoy worked as an R&D engineer in
NETAS A.S. between 1984 and 1986. Af-
ter receiving his PhD from Polytechnic Uni-
versity, New York in 1992, he became a
professor of Computer Engineering and cur-
rently the department head in Bogazici Uni-
versity. Prof. Ersoy’s research interests include
wireless/cellular/adhoc/sensor networks, activ-
ity recognition and ambient intelligence for per-
vasive health applications, green 5G and be-
yond networks, mobile cloud/edge/fog comput-

ing, software defined networking, infrastructureless communications for
disaster management. Prof. Ersoy is also the Vice Director of the
Telecommunications and Informatics technologies Research Center,
TETAM. Prof. Ersoy is a member of IFIP and was the chairman of the
IEEE Communications Society Turkish Chapter for eight years.

	1 Introduction
	2 Related Works
	3 System Model and Problem Formulation
	3.1 System Overview
	3.2 Problem Formulation

	4 DeepEdge
	4.1 Challenges of Applying DRL on Edge
	4.2 Providing MDP on Edge
	4.3 State Representation
	4.4 Action Space
	4.5 Reward Mechanism
	4.6 Applying DDQN on Edge
	4.7 The Delayed Action Effect

	5 Performance Evaluation
	5.1 Configuration
	5.1.1 Simulator Parameters
	5.1.2 Training the Agent
	5.1.3 Competitors

	5.2 Experiments
	5.2.1 Overall Results
	5.2.2 Application-based Results

	6 Conclusion and Future Work
	References
	Biographies
	Baris Yamansavacilar
	Ahmet C. Baktir
	Cagatay Sonmez
	Atay Ozgovde
	Cem Ersoy

