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ABSTRACT Unmanned Aerial Vehicles (UAVs) are a major component in next-generation network
architecture proposals, playing a critical role in problems like dynamic capacity enhancement, user coverage,
and task offloading.When smart utilization of theUAVs ismissing, these proposalsmay require sophisticated
approaches, including the deployment of additional edge servers and orchestration efforts. A typical
challenge arises from the dynamic nature of real-world problems in which the required capacity should
be provided at particular times when fixed infrastructure proves insufficient. One of those existing dynamic
problems is the unknown user locations in an infrastructure-less environment in which users cannot connect
to any communication device or computation-providing server, which is essential to task offloading in
order to achieve the required quality of service (QoS). Therefore, in this study, we investigate this problem
thoroughly and propose a novel deep reinforcement learning (DRL) based scheme, DeepAir. DeepAir uses
four main phases including sensing, localization, resource allocation, and multi-access edge computing
(MEC) to provide the corresponding QoS requirements for the offloaded tasks without violating the
maximum tolerable delay. To this end, we use two types of UAVs including detector UAVs, and serving
UAVs. We utilize detector UAVs as DRL agents which ensure the sensing, localization, and resource
allocation phases. On the other hand, we utilize serving UAVs to provide MEC features. Our experiments
show that DeepAir provides higher task success rates by deploying fewer detector UAVs in different scenarios
with different numbers of users and user attraction points compared to benchmark methods. Thus, DeepAir
achieves 59.65%, 86.06%, and 86.72% task success rates for 2, 4, and 6 detector UAVs, respectively, by using
12 serving UAVs, while the most successful benchmark method provides 28.62%, 41.39%, and 61.09% task
success rates for the same configuration, respectively.

INDEX TERMS Deep reinforcement learning, task offloading, UAVs.

I. INTRODUCTION
The widespread utilization of cloud computing after nearly
two decades has brought about many opportunities for both
companies and end-users that benefit from task offload-
ing, content caching, and resource allocation. Especially
throughout its computational advantages, cloud computing
has provided computing capacity, reliability, and robustness
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for the offloaded tasks which otherwise may not be solved on
the user devices [1], [2]. However, even though it provides
important opportunities, many other computing paradigms
including Cloudlet [3], Edge Computing [4], [5], and Fog
Computing [6] emerged in the last decade since cloud
computing cannot meet the low latency requirements of novel
user applications due to the wide area network delay (WAN)
[7].

Among those emerged edge solutions, multi-access edge
computing (MEC) [8] has become an extensively used
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FIGURE 1. An air computing environment with different air platforms.

technology since it provides low latency and computation
power for intensive tasks. Therefore, it is deployed for
different application types including healthcare, video ana-
lytics, smart home, and virtual reality [9], [10]. Nevertheless,
the fixed infrastructure of MEC prevents its utilization for
dynamic scenarios in which the number of users/requests
increases suddenly because of an event or a disaster. For
example, a sport or concert event, in which there are
thousands of new users, can exceed the capacity of the
existing MEC infrastructure and therefore the quality of
service (QoS) of users can be heavily affected as the
corresponding tasks cannot be executed properly.

To meet the dynamic capacity requirements, UAVs have
recently been deployed along with other air vehicles in
different air platforms under varied names such as aerial
radio access network (ARAN), and air computing [1], [11].
An air computing environment is depicted in Figure 1.
The communication between those different air platforms
throughout the corresponding air vehicles brings about new
research opportunities to meet those requirements consid-
ering the application QoS and user Quality of Experience
(QoE) [12]. Thus, different application profiles can benefit
from various advantages of this new 3D dynamic computing
paradigm.

Among those different air vehicles, UAVs are the most
studied units since their deployment is easier considering
their energy consumption, flying altitude, and configura-
tion [13]. To this end, they are used for dynamic capacity
enhancement in environments in which the fixed capacity
would not be sufficient to meet the application requirements
of an increasing number of users. Therefore, this feature
solves variety of problems such as communication in
a disaster site, and enhancing services in infrastructure-
less environments [14], [15]. Moreover, their deployment
provides significant vertical networking opportunities such as

high mobility support, coverage, latency, and two-way task
offloading [16]. As a result, the requirements of users living
in urban, suburban, and rural areas can be met efficiently
through these vertical networking opportunities.

There are many studies in which UAVs are used as
flying computational units to assist either deployed edge
servers or are solely deployed to enhance network capacity
for task offloading [15], [17]. Since the battery and CPU
capacity of the end users would not be sufficient to process
the corresponding tasks, UAVs therefore can be used as a
flying edge server. However, since there are many different
scenarios, various methods and algorithms are developed
to meet the service requirements. Deep Reinforcement
Learning (DRL) is one of those methods that is applied
in the literature since the traditional heuristic methods and
convex optimization cannot solve the corresponding dynamic
problems [18]. To this end, DRL solutions would be used
for trajectory optimization, energy-efficient offloading, UAV
placement, and generic task offloading.

A. MOTIVATIONS
User connectivity is a primary issue in accessing the related
resources for task offloading and service differentiation.
However, in order to provide a required service, the
corresponding technology such as edge or UAV should first
detect the user, and then the connection should be established.
However, in an environment which is infrastructure-less and
user locations are unknown, providing those services is a
crucial technical challange.

Even though UAVs are used in many different cases, their
utilization in an infrastructure-less environment in which
users cannot connect to any cellular operator, edge/cloud
server, or satellite has not been investigated properly. That
environment can be a disaster site, wilderness, or a natural
area that is open to visitors. In such an environment,
the detection of user locations, localization, and then the
measurement of required capacity for user tasks are major
issues to ensure the necessary service. Therefore, in this
study, we focus on an environment in which there are
users at unknown locations where we locate them through
a novel method using DRL. Afterwards, as the second step,
we estimate the corresponding requirements of the connected
users at detected locations and decide how many UAVs are
needed in those corresponding areas.

On the other hand, as detailed by Bai et al. [19],
DRL-based UAV studies have four main categories, and
most of the studies in the literature focus on a subset of
those categories. Therefore, in addition to the challenging
environment, providing a solution for each of those categories
is our overall goal.

B. CONTRIBUTIONS
In this study, we develop a DRL-based scheme, DeepAir,
which takes unconnected users’ emitted RSSI signals into
account as a reward and then finds the corresponding user
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TABLE 1. List of abbreviations.

attraction points in the environment. Since the number
of user attraction points could not be known, DeepAir
iteratively detects those points. Afterwards, based on the
quality of those detected locations, users that are in the
coverage can connect to agents, which we also call detector
UAVs. After these phases, the corresponding user task
profiles are extracted through the requests of connected users.
Next, the required capacity based on those task profiles
is computed, and then the necessary number of serving
UAVs, which have MEC features, is measured for the
detected user-concentrated areas. Thus, we increase the task
success rate based on their Service Level Agreement (SLA)
requirements. The main contributions of our paper are as
follows.

• In DRL-based UAV studies, a subset of four categories,
including (1) sensing, (2) localization, (3) resource
allocation, and (4) UAV-assisted MEC, are mainly
considered in most of the cases [19]. In this study,
we take all of these categories into account as phases
of our novel approach.

• In order to provide such a system, we develop a
DRL-based multi-agent scheme, DeepAir, which is a
novel approach that iteratively detects user locations
in the environment using unconnected users’ additive
RSSI as the reward. DeepAir performs this operation
iteratively, sending a single agent (detector UAV) to the
environment for each iteration, since the number of user
concentrated areas cannot be known.

• We examined the relationship between the detector and
serving UAVs by conducting various experiments with
different scenarios. As a result, the performance of
coordinated utilization of sensing, localization, resource
allocation, and UAV-assisted MEC phases on the overall
task success rate is investigated.

The rest of this paper is organized as follows. In Section II,
we elaborate on the related works including task offloading,
UAVs, and DRL. We provide the system model and problem
formulation in Section III. In Section IV, we introduce
DeepAir providing technical and theoretic discussions.
We show the experimental results in Section V. We discussed
our observations through experiments in Section VI. Finally,
we conclude our study in Section VII. We list the abbrevia-
tions used throughout the paper in Table 1.

II. RELATED WORKS
We surveyed the related research papers considering our
DeepAir implementation in which user locations are not
known and UAVs are used for sensing, localization, resource
allocation, and UAV-assisted MEC phases. We conducted
our research considering various high-impact journals and
conferences.

A. FLIGHT TRAJECTORY STUDIES
As UAVs are flying units in a networking environment,
their corresponding flight path is crucial for the system
performance considering energy efficiency, and overall task
offloading success. Therefore, some studies focus on finding
an optimal trajectory efficiently. In [20], Wang et al. focused
on the fairness-related optimization of user equipment con-
sidering geographical fairness, load, and overall energy con-
sumption. To perform this, they developed a multi-agent deep
reinforcement learning-based trajectory control algorithm
based on the Multi-Agent Deep Deterministic Policy Gradi-
ent (MADDPG) algorithm. They used the average fairness
index and overall energy consumption as their success metric.
Chang et al. proposed a trajectory design and resource
allocation scheme based on multi-UAVs [21]. To this end,
they considered the joint user association, power allocation,
and trajectory design to maximize the system utility. They
used a multi-agent DRL method which performs centralized
learning and decentralized execution. In [25], Ning et al.
proposed a UAV trajectory optimization scheme considering
user-differentiated services. Their goal was to minimize both
the computational costs of users and UAVs. They solved the
problems, including unknown information about the corre-
sponding services, andUAV trajectory, by using amulti-agent
DRL approach. In the end, they measured the overall
cost of UAVs and users, respectively, as the performance
metric. Oubbati et al. proposed a DRL-based multi-UAV
optimization method called DISCOUNT in order to utilize
UAVs as relays in vehicular ad hoc networks (VANETs) [29].
Accordingly, they considered energy consumption, coverage,
and routing performance to cover sparse areas in the
network.

B. UAV-ASSISTED MEC STUDIES
Since UAVs have computational units on them, they can
be used as flying edge servers. Therefore, deploying UAVs
efficiently for dynamic capacity enhancement would be
essential in particular locations. In [26], Hao et al. developed
a DRL-based multi-UAV solution for the task offloading
problem. Therefore, they investigated a UAV-assisted MEC
system considering energy consumption and task delay.
Shi et al. focused on the optimization of the UAV trajectories
and offloading strategies of users jointly [27]. Hence,
they investigated multi-UAV collaboration considering UAV-
assisted MEC. To this end, they used a multi-agent DRL
approach since the corresponding joint optimization requires
non-convex operation. In [28], Zhang et al. investigated
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TABLE 2. Comparison between related studies.

UAV-assisted communications using a single UAV and
multiple users. To this end, they proposed a proximal policy
optimization (PPO) based DRL algorithm in order to adjust
the direction, altitude, and speed of the UAV. In addition
to these adjustments, they took the QoS requirements of
the users into account regarding service time minimization.
In [30], Yan et al. focused on an efficient task offloading
strategy considering a UAV-assisted vehicular edge com-
puting environment. Therefore, their primary objective was
to reduce system delay by deploying a deep deterministic
policy gradient algorithm with a long short-term memory
(LSTM) network and an attention mechanism using UAVs.
They optimized their approach considering UAV battery
power, maximum flight speed, and communication band-
width constraints. Gao et al. investigated the joint trajectory
control and task offloading problem in UAV-assisted MEC
in [31]. Moreover, they took task latency minimization,
energy consumption of UAVs, and number of processed
tasks into account as an optimization goal. Furthermore, they
developed a DRL-based approach to solve this optimization
problem by considering a fast adaptive method in which,
when a trained scheme is faced with a new scenario,
the corresponding DRL model could perform a rapid
adaptation.

C. UAV-ASSISTED DISASTER SUPPORT STUDIES
UAVs are widely deployed in the case of natural disasters
in which communication infrastructure has been destroyed.
Therefore, they play a critical role in rescue operations
and also in finding the location of missing people. In [22],
Zhang et al. investigated user localization through UAV
swarms in the case of a disaster-affected ground that has
no base station. Their goals were to increase the efficiency
of the task and to minimize the energy consumption of the
UAVs. They proposed a multi-agent DRL approach whose
initial route is based on the probability distribution map of
the users. In [23], Zhang et al. investigated a multi-UAV
cooperative reconnaissance and search (MCRS) scheme for
the localization of static targets. Therefore, they designed a
belief probability mapmodel based on Dempster-Shafer (DS)
evidence theory and then proposed a new DRL algorithm

called Double Critic Deep Deterministic Policy Gradient
(DCDDPG). DCDDPG takes the belief probability map into
account and uses the MADDPG approach by utilizing two
critic networks. They evaluated their system performance
based on decreasing uncertainty, and increasing number
of targets found. Chent et al. focused on energy-efficient
and dynamic multi-UAV coverage control for disaster
areas [24]. They developed a trace pheromone-based mech-
anism through the MADDPG algorithm in order to provide
non-overlapping coverage. Based on reduced overlapping
UAVs, they could achieve energy efficiency. They evaluated
the performance of their system using average coverage
rate, normalized average energy consumption, and coverage
efficiency.

To the best of our knowledge, the unknown user location
case has not been deeply investigated by the related
studies that utilize UAVs to provide required services in
an environment. Thus, we provide a novel DRL-based
approach, DeepAir, which locates the users through their
RSSI using UAVs iteratively. Afterwards, we compute
the QoS requirements of connected users in the detected
areas and provide the corresponding serving UAVs. On the
other hand, our novel scheme provides sensing, resource
allocation, localization, and UAV-assisted MEC phases that
the related studies ensure only a subset of them. Our
main differences between the related studies are given in
Table 2.

III. SYSTEM MODEL AND PROBLEM FORMULATION
We consider an environment as a set of users denoted as
M = {1, 2, . . . ,M}, a set of serving UAVs represented as
Ns = {1, 2, . . . ,Ns}, and a set of detector UAVs specified
asNd = {1, 2, . . . ,Nd }. Detector UAVs are used for sensing
and localization of users in the environment whose locations
are unknown. Serving UAVs, on the other hand, are used
as a computational resource for offloaded tasks of users.
In other words, serving UAVs are flying edge servers in
the environment. Each UAV type has a horizontal radius, r ,
for communicational or computational coverage. Each user
m ∈ M randomly produces a computation-intensive task
Wm = (Dm,Cm, λm,Tmaxm ), where Dm is the size of the
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TABLE 3. List of main notations.

task as bits, Cm is the required CPU cycle for processing as
cycle/bit, λm is the arrival rate as task/sec, and Tmaxm is the
maximum tolerable latency as seconds. For convenience to
read, the list of main notations used in formulations is given in
Table 3.

In the environment, the location of a UAV n ∈ Ns or
n ∈ Nd can be denoted as un(t) = [xn(t), yn(t), zn(t)], where
xn(t), yn(t), and zn(t) are the X ,Y ,Z coordinates at time time
t . Therefore, the position of UAV n at the next time step for a
horizontal flight can be expressed as

xn(t + 1) = xn(t) + dn(t) × cos(ϑn(t)) (1)

yn(t + 1) = yn(t) + dn(t) × sin(ϑn(t)) (2)

where dn(t) is the flight distance, and ϑn(t) ∈ [0, 2π ] is the
flight angle. Moreover, the following movement constraints
should be satisfied during the horizontal flight considering
the area of the environment

0 ≤ xn(t) ≤ Xmax (3)

0 ≤ yn(t) ≤ Ymax (4)

where Xmax and Ymax are the maximum lengths of the
environment. Similarly, to avoid collision between any two
UAVs, including serving and detector UAVs, minimum

distance should be satisfied as follows

||ui(t) − uj(t)|| ≥ dmin ∀i, j, i ̸= j (5)

where dmin denotes the minimum distance. On the other
hand, location of a user m ∈ M at time t is represented as
Lm(t) = [xm(t), ym(t), 0] where xn(t), and yn(t) are the X , and
Y coordinates, respectively. Since users are in the ground, the
Z coordinates are zero.

If a user m ∈ M processes its task locally, the
corresponding local computation delay is measured as
follows

T locm =
Dm × Cm

fm
(6)

where fm is the computational capacity of userm as CPU cycle
per second. On the other hand, if the task Wm is offloaded
to a serving UAV ns ∈ Ns, the computation delay at ns is
measured as

TUAVns =
Dm × Cm

fns
(7)

where fns is the computational capacity of UAV ns as CPU
cycles per second. Since multiple users can be connected and
therefore offload their tasks to a servingUAV,M/M/1 queue-
ing model is used for the overall delay measurement at the
corresponding serving UAV as

Tt =

∑Msub
m Dm × Cm

fns −
∑Msub

m (λm × Dm × Cm)
(8)

where Msub denotes a subset of users concentrated in the
corresponding area. Therefore, queueing delay at the serving
UAV is measured as

Tq = Tt − TUAVns (9)

Considering the task offloading case for taskWm, transmis-
sion delay between a userm ∈M and a serving UAV ns ∈ Ns
is measured as

Tm,ns =
Dm
vm,ns

(10)

where vm,ns is the data rate between m and ns as bit/sec.
It is important to note that users connect and communicate
multiple serving UAVs via orthogonal frequency-division
multiple access (OFDMA). Therefore, the transmission
interference between different users can be ignored.

Channel gain, which indicates to the measurement of the
strength of the signal between the transmitter and receiver in
wireless communication, is computed between a user m and
a detector UAV nd ∈ Nd using free-space path loss model as

hm,nd (t) =
gm,nd

|dm,nd (t)|2
(11)

where gm,nd denotes the channel power gain between the user
m and detector UAV nd , and dm,nd (t) is the distance at time
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t . Considering the cumulative signal strength of users at a
detector UAV nd , it is measured as

H (t) =

M∑
m

hm,nd (t) (12)

Since serving UAVs are sent to the locations that detector
UAVs has already provided, we assume that the channel
quality between users and serving UAVs is already above
an acceptable threshold and therefore is not included in the
formulation.

A. PROBLEM FORMULATION
In the environment, the total delay for a task of user m is
computed as

twm = tnetwork + tservice (13)

where tnetwork is the network delay, and tservice is the service
delay. The network delay is computed as

tnetwork =

{
Tm,ns , if βm,ns = 1
0, if βm,ns = 0

(14)

where βm,ns is a binary variable that indicates whether the task
is offloaded to a serving UAV or not. While calculating the
network delay, the propagation delay is ignored. The service
delay on the other hand is computed as

tservice =

{
TUAVns + Tq, if βm,ns = 1
T locns , if βm,ns = 0

(15)

In our environment, a task of user m, Wm, is successfully
completed if the total delay is lower than or equal to the
maximum tolerable delay of the task. Hence, we define αwm
as a success variable for task completion as

αwm =

{
1, if twm ≤ Tmaxm

0, otherwise
(16)

Thus, in this study, our main goal is to maximize the overall
task success in the environment. To this end, our objective
function is defined as

max
M∑
m

W∑
wm

αwm (17)

subject to

Ns∑
ns

βm,ns ≤ 1 ∀m ∈M (Constraint 1)

dm,ns ≤ rns ∀m ∈M, ∀ns ∈ Ns (Constraint 2)

fns − (λm × Dm × Cm) > 0 ∀m, ns (Constraint 3)

Equations (3) − (5) (Constraint 4)

where dm,ns is the distance between user m and serving UAV
ns. Constraint 1 represents that a task can be offloaded to
only a single serving UAV even though the user can connect
to multiple serving UAVs. Constraint 2 denotes that a user

should be in the coverage of a servingUAV in order to connect
it and then offload a task to it. Constraint 3 ensures that
offloaded tasks cannot exceed the capacity of a serving UAV.
Finally, Constraint 4 describes the movement constraints.

IV. DEEPAIR
Our DeepAir operation has four main phases that should
be considered to provide the required QoS for user tasks.
As formulated in Section III, a user task is successfully
completed if the total delay in the system is smaller than
or equal to its maximum tolerable delay. Therefore, each
phase, including sensing, localization, resource allocation,
and MEC, is significant for the efficient operation in the
environment. To this end, we use detector UAVs for the
sensing, localization, and resource allocation phases. Note
that a detector UAV is also used as a DRL agent in the
environment to find the user-concentrated areas. On the other
hand, based on the reporting of detector UAVs, we deploy
serving UAVs for the offloading and processing of tasks as
part of the MEC resources. The whole operation including
four phases is depicted in Figure 2.
Each type of UAV in the environment can communicate

with each other via a separate channel. Thus, they know
their existing location. Moreover, they can also communicate
with the base, which is at (0, 0) coordinates, so that they can
notify the existing situation in the corresponding areas in their
horizontal coverage. As a result, the system can react to the
events in those corresponding areas in real-time.

A. SENSING
Due to the nature of the infrastructure-less deployment,
initially, users in the environment are not connected to
any system component, emitting only signals for a possible
connection. Therefore, as shown in Figure 3a, a detector UAV
can sense signal strength at some point in the environment
at time t . Based on the location of users and the detector
UAV, that signal strength can change in different areas of
the environment considering the cumulative signal strength
measurements in Equations 11 and 12.
In this study, we assume that there are different user

attraction points in the environment whose locations are also
unknown. Based on those user attraction points as shown in
Figure 3a, users are gathered in certain areas. Therefore, the
corresponding additive signal strength would be higher when
the detector UAV is close to that area. However, considering
the fact that there would be many user attraction points whose
locations could be in different parts of the environment, and
some of those parts may have similar user densities, sensing
levels can turn out to have identical or similar values for
different points in the environment. Thus, this fact should be
taken into account in the localization phase in which we use
DRL.

B. LOCALIZATION
In the localization phase, information gathered in sensing is
initially used for themovement of detector UAVs (agents) and
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FIGURE 2. Phases of DeepAir.

then to locate the corresponding user attraction points. One of
the crucial factors here is that the number of user attraction
points in the environment is also unknown along with the
number of users, and user locations. Therefore, we cannot
apply multiple agents simultaneously in the environment
since if the number of deployed agents is less than the number
of user attraction points then users at some of the attraction
points cannot be detected and served. Thus, we apply an
iterative approach using DRL as shown in Algorithm 1.
In Algorithm 1, we find the user attraction points in the

environment. To perform this, we initially set a threshold
for new connected users in an iteration. For each iteration
we send a DRL agent to the environment flying from the
base at (0, 0) coordinates, and after the convergence it returns
the corresponding location information along with howmany
new users are connected to it. If the number of connections

is smaller than the threshold, the execution of the algorithm
is terminated. Otherwise, we continue to send an agent to
the environment. Note that when a user device connects to
a detector UAV, it stops emitting the connection signal. As a
result, the additive signal power would be less in a particular
place in the next iteration for the agent. This situation is
depicted in Figure 3.

1) MDP DEFINITION
The DRL is based on MDP which is formally defined as a
4-tuple < S,A,P,R > where

• S is the set of states where s ∈ S
• A is the set of actions where a ∈ A
• P : S × A → P(S) is the state transition
probability function that provides the probability of
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Algorithm 1 Finding Locations
1: Input: Threshold and the environment
2: Output: Found Locations
3: isThresholdMet = True
4: locations = [ ]
5: while isThresholdMet do
6: singleLocation, connectionCount = DDQN()
7: if connectionCount is smaller than Threshold then
8: isThresholdMet = False
9: else

10: Add singleLocation to locations
return locations

P(st , st+1) = P(st+1 = s′ | st = s, at = a).
This function denotes that the current state st at time t
changes to the state st+1 by taking the action a.

• R : S ×A× S → R is the reward function. It defines the
corresponding reward R at time t by taking an action a
in a state st . Therefore, it can be also defined as Rt =

R(st , at , st+1).

Our environment provides the corresponding MDP defi-
nition through the state representation, action space, reward
mechanism, and state transition. Therefore, an applied DRL
algorithm in the environment using a detector UAV can
create a policy π based on a given state as π (a | s) =

P (at = a | st = s). Through this policy, the agent can learn
the dynamics in the environment for a given state and
therefore takes the most effective action.

2) STATE SPACE S
Based on the Algorithm 1, there is only a single agent in the
environment for each iteration. Therefore, the state at time t
consists of the current location of the agent as

s(t) = un(t) = [xn(t), yn(t), zn(t)] (18)

3) ACTION SPACE A
In our environment, the action space A consists of five
discrete actions considering the horizontal movements.
Therefore, it is defined as

a(t) = [Left,Right,Up,Down,NoMove] (19)

Based on this definition, the horizontal speed of each agent
is fixed during their flight. Considering the selected action at
time t , they can stay fixed at their horizontal coordinates by
NoMove action. Otherwise, they can move into four different
areas of the environment.

4) REWARD FUNCTION R
Based on the policy π , the agent takes the corresponding
actions in the environment to maximize its cumulative
reward. To this end, for a given state st , the agent maximizes
the expected sum of future reward by applying policy π (st )

FIGURE 3. Depiction of the state of environment regarding the emitted
signals.

as follows

Rt =

∞∑
i=t

γ ∗ R(si, si+1) (20)

where γ ∈ [0, 1] is the discount factor that denotes the
importance of the long-term rewards if its value is close
to one. Otherwise, its value would be close to zero. Thus,
the reward function is defined as follows based on the
consideration above

R(t) =

{
H (t), if satisfying constraints
−1, if otherwise

(21)

5) APPLICATION OF DRL
Since our action space is discrete, applying a value-based
DRL algorithm is more convenient in our environment.
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Therefore, for each DRL agent, we implement Deep Q-
Learning (DQN) algorithm [32], which manifests a high
success in many different environments with different state
spaces.

In value-based DRL algorithms such as DQN, the agent
should select the best state-action pair among different
options through its policy by a given state st by maximizing
Q-function, Qπ (st , at ). Therefore, under the policy π , the
Q-function is defined as

Qπ (st , at ) = E
[
Rt | si = s, ai = a

]
(22)

which denotes the value of an action at in a state st . Thus,
an optimal policy is defined as selecting the highest valued
action in each state

π(st ) = argmax
a′

(Q(st , a′)) (23)

where a′ indicates the set of all possible actions. As a result,
the value of a state-action pair is computed as

zt = Rat (st , st+1) + γ ∗ Q(st+1, argmax
a′

Q(st+1, a′
; θt ); θt )

(24)

where θt represents the Q-network parameters. On the
other hand, considering the convergence through the Q-
network, the agent minimize the temporal difference error,
δt , of Qπ (st , at ) regarding zt :

δt =| Q(st , at ) − zt | (25)

C. RESOURCE ALLOCATION
After the completion of sensing and localization phases
through detector UAVs, the next step is the resource
allocation for serving UAVs which provide computational
serving capabilities. Since a serving UAV has a limited
capacity, measuring how many of them should be deployed
is the main problem in this phase.

As users have already connected to the corresponding
detector UAVs, and have started to send their task offloading
requests, the system can create a task profile in those
user-connected areas by conducting several capacity calcu-
lations. To this end, we perform a capacity calculation that
includes the task profile of each user as we defined Wm =

(Dm,Cm, λm,Tmaxm ). The measurements are essentially based
on Equation 8 as the delay at serving UAVs is based on
M/M/1 queueing model.
After the measurement of the required number of serving

UAVs for each detected area, the other important issue is
the deployment of available serving UAVs into those areas,
each of which may have different task profiles. Note that
the available serving UAVs may not meet the total capacity
requirements in the environment. In this case, available
serving UAVs are first deployed to the areas which have a
higher need for serving UAVs regarding task profiles. On the
other hand, if the required numbers of serving UAVs are equal
for the corresponding areas, then a round-robin approach is
applied for the deployment. Note that our primary goal for

TABLE 4. Simulation parameters.

this computation and then deployment is to maximize the
overall task success in the environment as defined in our
objective function in Equation 17.

D. MEC
After the resource allocation, the next and final phase
is providing the MEC services to users. To this end,
users offload their tasks to serving UAVs and expect a
service without violating the task’s maximum tolerable
delay, Tmaxm .
A user in a corresponding area can connect to multiple

serving UAVs simultaneously in the environment. Therefore,
a user should select one of its connected serving UAVs at a
particular time to offload the corresponding task. It performs
this selection based on the existing queueing condition for
each serving UAV. Note that since multiple users can connect
to a single serving UAV, the M/M/1 queueing model is
used for the total delay measurement at the serving UAV
as explained in Section III. Here, we assume that a user
can receive the recent queueing delay information from
each serving UAV to which it is connected via a separate
channel. Thus, it selects a serving UAV for task offloading
considering the minimum queueing delay. As a result, our
objective function defined in Equation 17 can be provided by
minimizing the total delay regarding task profiles in the long
term.

V. PERFORMANCE EVALUATION
We conducted experiments using a discrete event simulation
for the performance evaluation. In these experiments, we have
an environment whose size is 500 × 500 m2. In this
environment, there are various number of user attraction
points around which the user densities are higher. Note that
the location of those users and attraction points are initially
not known by the system. The corresponding simulation
parameters are given in Table 4. Throughout the experiments,
we used Python 3.10. Moreover, we used PyTorch version
2.2.0 for the training of DRL agents.

In our experiments, we assumed that each user in the
environment produces a task with the parameters Dm, Cm,
λm, and Tmaxm . Moreover, each produced task should be
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TABLE 5. Hyperparameters of DRL algorithm.

FIGURE 4. Effect of learning rate on scores for each episode using
100 users.

offloaded to one of the serving UAVs since we assumed
that the computational capabilities of user devices are not
sufficient to meet the task requirements. Similarly, each
detector and serving UAV is identical in terms of radius,
and altitude. Considering the offloading, we ignored the
propagation delay for simplicity. Note that our essential
goal was to maximize the overall task success as defined
in Equation 17. We repeated our experiments 50 times with
different seeds. The duration of each experiment in simulator
time was 1000 seconds.

A. TRAINING STEP
Regarding Algorithm 1, we train a DRL agent through
detector UAVs for each iteration as long as it provides new
connections. To this end, we tested several hyperparameters
throughout the training step in order to achieve convergence
for different user distributions in the environment considering
the final model. Generally, we used random search based on
our experience in the domain [33].

The neural network in our final model consists of three
layers each of which includes 128 neurons. Rectified Linear
Unit (ReLU) is applied for each neuron as the activation
function.We used mean squared error (MSE) for the loss, and
stochastic gradient descent (SGD) as the optimizer. On the
other hand, for the initial exploration, exploration factor, final
exploration, and replay memory size, we used well-known
values from the literature as given in Table 5.

FIGURE 5. Effect of the number of users and serving UAVs on DeepAir.

FIGURE 6. Effect of the number of detector UAVs on benchmark methods
using 80 users.

Since the learning rate is the most crucial hyperparameter
for the performance of the model, we exclusively tested
different settings. Thus, we determined 0.005 as the final
value for the neural network of the agents. Figure 4 shows the
effect of two different learning rates over episodes. As shown
in the figure, a lower value of learning rate, such as 0.0005,
causes a late convergence in the environment. On the other
hand, if we use 0.005 as the learning rate, themodel converges
earlier which provides time efficiency.

B. COMPETITORS
We used two competitors as benchmark methods namely
the Community Flying (CF) and Random methods similar
to [25]. In CF, we divided the environment into equal com-
munities, and the center of each community was evaluated
as a possible user attraction point. Accordingly, detector
UAVs are sent to those centers for possible connections and
corresponding QoS measurements. Afterwards, the required
number of serving UAVs is deployed based on the needs
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FIGURE 7. Results of benchmark methods.

of those areas. On the other hand, in the random method,
the possible attraction centers are selected randomly in the
environment based on the available number of detector UAVs.
We named the random methods based on the available
number of detector UAVs as in the case of CF. To this end,
for example, if we use 8 detector UAVs, then the method is
named as Random-8.

C. PERFORMANCE EXPERIMENTS
We first evaluate the performance of DeepAir considering
the effect of varying numbers of users, and different serving
UAVs. As shown in Figure 5, the success rate of DeepAir is
quite high based on the successfully placed detector UAVs
through DRL. Note that based on the configuration in the
experiments, at most six detector UAVs are used when we
apply DeepAir. On the other hand, when the number of users
increases based on the same number of attraction points, the
task success rate for each serving UAV case decreases. This is
an expected result since the computational capacity of those
serving UAVs would not be sufficient to meet the higher
number of tasks produced by each user in the environment.
Similarly, a higher number of servingUAVs results in a higher
task success rate since they provide more computational
capacity.

Prior to the evaluation of the performance of benchmark
methods, we first conducted experiments to observe their
success rate using different numbers of detector UAVs. To this
end, as shown in Figure 6, we compared 4, 6, 8, and
16 detector UAV cases using 80 users. As expected, using
an increased number of detector UAVs provided a higher
task success rate since the probability of covered users in
the environment is higher in that case. Therefore, we used
CF-16 and Random-16 as the benchmark methods in the
experiments.

The performance of Random-16 and CF-16 methods
based on different numbers of users and serving UAVs are
shown in Figure 7. The results manifest that CF-16 provides
a better task success rate since it is a more structured
approach. However, even though random decisions are taken
in Random-16, when we use 9-10 serving UAVs, the task
success rate is above 70% which is quite good. On the other
hand, when the number of users increases, the task success
rate decreases in both methods for the same reasons that we
elaborated on regarding the results of DeepAir.

After the evaluation of benchmark methods and DeepAir,
next we compared their most successful deployments in
which we used ten serving UAVs. Figure 8 shows the
results of this comparison. Based on the results, DeepAir
outperforms both benchmark methods for different user
counts. Note that since the arrival rate for each task,
λm, is 0.30 task/sec, each user produces 300 tasks on
average for each experiment. Moreover, both benchmark
methods deployed 16 detector UAVs in this comparison,
while DeepAir utilized at most six detector UAVs. On the
other hand, the task success rate is close for each method
when there are 100 users in the environment. This is the
result of the insufficient computational capacity of serving
UAVs deployed in the environment. Therefore, even if the
best locations are selected for detector UAVs, the task
success rate cannot exceed a certain value under those
circumstances. Moreover, since the accuracy of location
selection in Random-16 and CF-16 methods is less than
that of DeepAir, the less number of connected users are
served better using ten serving UAVs. This situation results in
close values in terms of the task success rate when there are
100 users in the environment. In summary, although the user
locations are successfully detected, if the number of serving
UAVs is not sufficient for a certain load, the task success rate
improvement requires more UAVs.
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FIGURE 8. Performance comparison between DeepAir and benchmark
methods using 10 serving UAVs. While CF-16 and Random-16 use
16 detector UAVs, DeepAir outperform them using at most six detector
UAVs.

FIGURE 9. The effect of detector UAVs on the connected users.

Since the relationship between the number of detector
UAVs and serving UAVs is also significant, and Figure 6
depicts only the performance of benchmark methods,
we conducted additional tests. To this end, we configured
an experiment based on the same parameters as given in
Table 4. However, in this case, to evaluate and show the
corresponding relationship more clearly, we fixed the number
of user attraction points and users as five, and 50, respectively.
To perform a fair evaluation, each user attraction point
included 10 users along with different user distributions.
We tested the effect of 2, 4, and 6 detector UAVs by
deploying 8, 10, and 12 serving UAVs.

We first evaluated the percentage of connected users
considering the number of detector UAVs based on each
method as shown in Figure 9. The results show that when
the number of detector UAVs increases, more users can
be connected to the system as expected. As DeepAir uses
a smart approach through DRL, it finds user locations

FIGURE 10. The effect of detector and serving UAVs on task success rate
using 50 users.

efficiently even using a small numbers of detector UAVs.
Therefore, it outperforms benchmark methods. On the other
hand, considering the performance of benchmark methods,
as detector UAVs are placed more strategically in the CF
method, it detects users better than the Random method.

Next, we evaluated the task success rate by deploying 8,
10, and 12 serving UAVs based on the connected users by
detector UAVs. Each user produces 300 tasks on average
for each simulation, hence approximately 15000 tasks were
produced for each experiment in total. The results given
in Figure 10 show the relationship between the detector
and serving UAVs more clearly. When there is a higher
number of serving UAVs in the environment, the task
success rate is close to the percentage of connected users.
Moreover, the task success rate follows the pattern of the
connected users through detector UAVs regarding different
numbers of serving UAVs. Therefore, increasing the number
of serving UAVs until the total capacity requirements are
met in a detected area would increase the task success rate
consistently.

VI. DISCUSSION
Considering the fact that the unknown user location problem
has not been deeply investigated in the literature, we think that
several points should be discussed based on our observations
and experiments throughout this study. We first noted about
the discrete action space for each type of UAV. Since
continuous horizontal actions would complicate the already
complex problem regarding DRL, we applied a discrete
action space. Moreover, and more importantly, applying a
discrete action space alleviates the problem since it turns that
into amaze problem inwhich there are several different prizes
(RSSI power) in different sections of the environment. The
agent learns to follow those small prizes to reach a bigger
prize through episodes. Therefore, the convergence of the
agents would be more quickly compared to the case of a
continuous action space. As a result we could apply the DQN
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algorithm, which is a less complex regarding other DRL
algorithms such as PPO, and DDPG.

Throughout our experiments, we also observed that higher
RSSI due to a bigger number of users provides more accurate
location prediction in DRL. As a result of this, more users
can connect to the corresponding detector UAVs. Therefore,
if the capacity of serving UAVs is so high, it is not so affected
by the number of users, then the task success rate would be
larger even though the load is increased. This is an important
observation since, otherwise, the corresponding results would
be evaluated incorrectly. For this reason, the selection of the
capacity of serving UAVs and the required CPU cycles for
user tasks are significant for manifesting the accuracy of the
experiments.

VII. CONCLUSION
In this study, we investigated the unknown user location
problem in a UAV-assisted environment. The corresponding
environment can be a disaster site, wilderness, or a rural area
in which user devices cannot connect to any communication
device and edge servers because of the lack of infrastructure.
Moreover, each user device produces tasks that should be
completed regarding their maximum tolerable delay which
is not met by the computational capabilities of user devices.
Therefore, those tasks should be offloaded to the related
computational units. In order to achieve this in such an
environment, sensing, localization, resource allocation, and
MEC capabilities should be provided together, sequentially.
Therefore, we proposed DeepAir, a novel approach which
uses DRL iteratively via detector UAVs that are responsible
for sensing, localization, and resource allocation. Afterwards,
MEC features are provided to those connected users by
serving UAVs. Conducted experiments show that DeepAir
provides a high task success rate by using a small number of
detector UAVs in the environment regarding the benchmark
methods.

In the future, we plan to take energy consumption
into account since energy efficiency is crucial for the
movements of the UAVswhich would affect the performance.
Therefore, we plan to optimize the trade-off between energy
consumption and task success rate efficiently.
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