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Abstract

There is an ever-growing race between what novel applications demand from the infrastructure and what the continuous tech-
nological breakthroughs bring in. Especially after the proliferation of smart devices and diverse IoT requirements, we observe the
dominance of cutting-edge applications with ever-increased user expectations in terms of mobility, pervasiveness, and real-time
response. Over the years, to meet the requirements of those applications, cloud computing provides the necessary capacity for
computation, while edge computing ensures low latency. However, these two essential solutions would be insufficient for next-
generation applications since computational and communicational bottlenecks are inevitable due to the highly dynamic load. On
the other hand, inadequate infrastructure considering rural areas and disaster sites makes the utilization of those solutions difficult.
Therefore, a 3D networking structure using different air layers including Low Altitude Platforms, High Altitude Platforms, and
Low Earth Orbits in a harmonized manner for both urban and rural areas should be applied to satisfy the requirements of the dy-
namic environment. In this perspective, we put forward a novel, next-generation paradigm called Air Computing that presents a
dynamic, responsive, and high-resolution computation environment for all spectrum of applications. In this survey, we define the
components of air computing, investigate its architecture in detail, and discuss its essential use cases and the advantages it brings for
next-generation application scenarios. We provide a detailed and technical overview of the benefits and challenges of air computing
as a novel paradigm and spot the important future research directions.
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1. Introduction

In order to meet the stringent demands of fully connected,
intelligent, and computation-intensive applications with low la-
tency support, vertical networking solutions provide many op-
portunities [1]. Especially, considering the number of Internet
of Things (IoT) connections which are estimated as 14.7 billion
in 2023, vertical networking would be crucial for the seamless
coverage and dense connection capabilities [2, 3]. Moreover,
since the connection of devices that have separate requirements
must be processed heterogeneously to ensure Quality of Ex-
perience (QoE), reliable computation of different task types is
critical in the next-generation networking systems [4].

The diverse requirements of new generation applications are
hard to satisfy with well-known practices [5]. Therefore, de-
ployment of Unmanned Aerial Vehicles (UAVs) as Low Al-
titude Platforms (LAP), airplanes as High Altitude Platforms
(HAP), and Low Earth Orbit (LEO) satellites are legitimate
candidates for future networks in order to satisfy the require-
ments of different applications since they can provide low la-
tency, high computation capability, reliability, and availability.
These properties are specifically important for the processing of
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the corresponding tasks of those applications in terms of con-
tent caching, resource allocation, task offloading, and extreme
mobility.

Although edge computing provides promising results in ur-
ban settings in the short-run, reaching genuine ubiquitous ex-
ecution of real-time, computationally intensive novel applica-
tions will require further approaches. Air components with
computational processing units in this respect harmonize tradi-
tional terrestrial edge computing with a wide range of air tech-
nologies to obtain a robust, high-capacity computational infras-
tructure that embraces urban, suburban, and rural scenarios.

1.1. Air Computing as a New Computational Paradigm

In the literature, the organization and orchestration of the 3D
networking structure is called under different names such as
aerial communication, Space-Air-Ground Integrated Network
(SAGIN), airborne networks, and aerial computing [6, 7, 8, 9].
Especially, the aerial term is widely used to point to the utiliza-
tion of air components in 3D networking. Since air layers and
the corresponding air components would be an essential part
of the next-generation networking systems rather than an aux-
iliary, we call this next-generation computation paradigm as air
computing. The architecture of air computing and relationship
between different components are shown in Figure 1.

The main advantage of air computing as a new computational
paradigm is that it can meet the requirements of dynamically
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Figure 1: Air Computing Architecture.

changing QoS needs. Since infrastructure-based fixed capac-
ity may not satisfy application requirements during an event,
different air platforms can be directed to the corresponding lo-
cation through air computing. Thus, the QoE of users would not
be affected even though the capacity of the infrastructure can be
exceeded thanks to the coordination between different compo-
nents in air computing as shown in Figure 1. This coordination
can be through computational offloading, content caching, cov-
erage, and mobility. Moreover, it can be performed in urban,
suburban, and rural areas. To this end, we elaborate on differ-
ent situations, applications, and use cases throughout this study.

1.2. Motivation
A wise deployment of terrestrial servers and air components

for the computational needs will change the traditional methods
such as edge and cloud computing. Therefore, in this study, we
investigate the computing opportunities that would be the result
of the intelligent communication between terrestrial servers and
air vehicles which we call air computing. These opportunities
manifest themselves as an enhancement of QoS and QoE con-
sidering both communication requirements and end-user needs
[12, 13]. Moreover, as shown in Figure 1, we believe that
the coordination between devices and different communication

mediums through the air would open new research challenges
that will shape the future of the Internet.

Even though there are many use cases for air computing
as we investigate throughout this survey, we believe that air
computing would be especially useful for dynamic capacity
enhancement scenarios considering the battery and energy re-
quirements of air vehicles. Therefore, air computing is benefi-
cial in cases where the service load exceeds the capacity of the
fixed infrastructure as we indicated in Section 1.1. This load
can be triggered by dynamic events such as sport performances
and concerts. Also in the case of a disaster existing infrastruc-
ture may be completely destroyed and air vehicles become the
only remedy.

We foresee that air computing will be the next generation
computation paradigm as a result of the evolution of Multi-
Access Edge Computing (MEC) [14]. Since the computation
paradigm in MEC is typically restricted with the 2D terrestrial
networks in which the resources allocated for the application
tasks in either an edge server or cloud server, system bottle-
necks can limit meeting the diverse requirements of heteroge-
neous applications. Since air computing is comprised of differ-
ent air communication technologies, resource allocation alter-
natives are considerably increased when compared with the 2D
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Table 1: Comparison Between Related Surveys
Main Theme

Study 6G/RAN LAP HAP LEO MEC
Architecture and

QoE Related Use Cases Contributions
[10] X X X X Focused on protocols for the design of

aerial communication
[8] X X X X Investigated RF wireless technologies for

future aerial communications
[11] X X X X Mainly focused on aerial RANs consider-

ing 6G access infrastructure
[9] X X X X X Mainly focused on RF technologies and

examined vertical domain applications
Our
study

X X X X X We mainly focus on detailed scenarios to
improve QoS and QoE considering differ-
ent use-cases of air computing architecture

settings. Vertical networking structure shown in Figure 1 de-
picts how different applications would use different resources
to ensure their QoS requirements.

1.3. Research Scope and Contributions

In this survey, we focus on the computational requirements
of the next generation heterogeneous applications and corre-
sponding solutions formulated as the air computing in which
terrestrial servers, LAP, HAP, and LEO layers are coordinated
intelligently. To put relevant technologies in perspective, we
first investigate the differences between edge computing and
air computing in terms of the network architecture, challenges,
and use cases. Next, we evaluate the advantages of air comput-
ing regarding latency, computation capability, storage, mobility,
coverage, and reliability.

Since air computing includes both terrestrial servers and
air components, we also examine studies on edge computing,
UAVs, and other air components in order to show the benefits
of air computing more concretely. Furthermore, we detail the
possible scenarios in which air computing would be the only
valid alternative.

It is important to note that the technical aspects of the Aerial
Radio Access Network (ARAN) technologies including 5G and
6G which can be used in air computing are out of the scope
of this survey. We only focus on the computation part of the
air computing regarding the aforementioned architectural ad-
vantages and possible use cases. Regarding our air comput-
ing definition, there are four recent survey papers including
[10, 8, 11, 9] that investigated the ARAN. In [10], Cao et al. in-
vestigated the mechanisms and protocols for airborne commu-
nication networks. They detailed LAP-based and HAP-based
communication networks regarding their channel models, pro-
tocols, and spectrum efficiency. In [8], Baltaci et al. focused on
the connectivity requirements and use cases of aerial vehicles
considering the challenges of employing wireless communica-
tion standards. They introduce the term Future Aerial Com-
munications (FACOM) for aerial connectivity and its use cases.
They also examined Radio Frequency (RF) wireless technolo-
gies to apply in FACOM. In [11], authors focused on the future
network design, system model analysis, and enabling technolo-
gies in terms of 6G access infrastructure, transmission propa-

gation, communication latency, and energy consumption. They
defined the radio access model as ARAN. On the other hand,
the study in [9] is the closest work to our survey paper. How-
ever, they mostly focus on 6G and wireless technologies includ-
ing the frequency spectrum and communication model, while
we consider only the computing paradigm along with its ad-
vantages. To this end, we investigate thoroughly the paradigm-
related scenarios such as energy efficiency, task offloading, and
content caching which affect QoS directly, while they did not
examine deeply. On the other hand, conceptually, we consider
air computing as a next-generation paradigm which is the evo-
lution of edge computing, while they evaluated aerial comput-
ing as an amalgamation of ARAN and edge computing. The
main differences between those studies and our study are given
in Table 1.

The main contributions of this survey are as follows.

• We introduce air computing which is the next-generation
computation paradigm. We define its components includ-
ing terrestrial, LAP, HAP, and LEO layers and investigate
them thoroughly.

• We analyze recent studies that focus on edge computing,
UAVs, and other air components in the literature and com-
pare them with air computing in order to show its concrete
advantages and possible solutions that cannot be offered
by traditional networking paradigms.

• We detail the scenarios for air computing that improve the
QoS and QoE for end-users. Especially, we focus on sev-
eral use cases such as natural disasters, real-time video,
and outdoor activities. These use cases require seamless
connection, intelligent routing, and dynamic capacity en-
hancement which may not be met by traditional computing
schemes regarding Metropolitan Area Network (MAN)
and Wide Area Network (WAN).

• We investigate the open research problems and challenges
for air computing considering the architecture design, re-
quest management, utilization of Artificial Intelligence
(AI), a required protocol, energy issues, air regulations,
and movement mechanisms. We believe that we point out
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important spots in the literature so that readers would ex-
pand their studies through one of those areas.

1.4. Methodology

In this study, to survey the literature, we consider the com-
putational features of ground and air resources. Therefore,
our fundamental methodology to evaluate the related studies
is based on QoS enhancement through the optimization of task
offloading, caching, coverage, computational capacity, resource
allocation, and energy efficiency schemes. Moreover, we take
the deployment and trajectory methods into account for air ve-
hicles which are also crucial in system performance.

Based on our goals for this survey, our inclusion criteria for
relevant studies include the publication date of studies, their
publisher, corresponding search engines, and keywords. In
most cases, we include studies published after 2017. How-
ever, there are some exceptions if the number of citations of the
corresponding study is high. We mainly evaluated studies pub-
lished by IEEE, ACM, and Elsevier. Moreover, we used Google
Scholar, Scopus, and IEEE Xplore search engines to find rele-
vant studies. In these search engines, we used the following
keywords: ”edge computing”, ”task offloading”, ”resource al-
location in edge computing”, ”UAV-assisted edge computing”,
”UAV-assisted task offloading”, ”UAV-assisted resource allo-
cation”, ”UAV deployment”, ”UAV trajectory optimization”,
”High Altitude Platforms”, ”LEO Satellite-based task offload-
ing”, and ”UAV Energy Efficiency”.

Throughout our survey, we exclude dissertations, theses, and
book chapters. Moreover, we do not include studies that focus
on 5G, 6G, and medium access control technologies. Further-
more, we exclude studies if there is a newer study with similar
goals/methods.

The rest of the paper is organized as follows. In Section II,
we introduce air computing considering its advantages, and its
differences with edge computing. We show the use cases of
air computing in different scenarios in Section III. In Section
IV, we investigate edge, LAPs, HAPs, and LEOs which are the
main components of air computing. We examine correspond-
ing studies and show the reader that unresolved issues in those
papers would be solved by air computing. In Section V, we
provide the challenges, opportunities, and future research di-
rections. Finally, we conclude our paper in Section VI. We list
the abbreviations used throughout the paper in Table 2.

2. Air Computing

Air computing is a next-generation computational paradigm
in which ubiquitous applications with radical networking and
computational requirements are satisfied with the help of a fam-
ily of novel communication opportunities. It provides a highly
dynamic, scalable and responsive computational infrastructure
in which terrestrial servers are harmonized with various air lay-
ers including LAP, HAP, and LEO as shown in Figure 1. More-
over, air computing augments traditional 2D edge computing
with a wide spectrum of different computational servers in the
air considering a highly dynamic context.

Table 2: List of abbreviations
Notation Description
AI Artificial Intelligence
ARAN Aerial Radio Access Network
AR Augmented Reality
CAPEX Capital Expenditures
DNN Deep Neural Network
DRL Deep Reinforcement Learning
FACOM Future Aerial Communications
FL Federated Learning
GEO Geosynchronous Equatorial Orbit
HAP High Altitude Platform
IoT Internet of Things
LAN Local Area Network
LAP Low Altitude Platform
LEO Low Earth Orbit
MAN Metropolitan Area Network
MAR Mobile Augmented Reality
MDP Markov Decision Process
MEC Multi-Access Edge Computing
ML Machine Learning
NFV Network Function Virtualization
OPEX Operating Expenses
QoS Quality of Service
QoE Quality of Experience
QoL Quality of Life
SAGIN Space-Air-Ground Integrated Network
SDN Software-Defined Networks
UAV Unmanned Aerial Vehicle
UE User Equipment
WAN Wide Area Network

Currently in the urban area, users can enjoy the underlying
terrestrial resources to experience seamless connection based
on the available infrastructure. With the help of edge comput-
ing, mobile devices can reach one of the nearest servers for the
execution of their delegated tasks via offloading mechanisms.
Despite these advanced approaches, ever-growing application
requirements and increasing user mobility patterns push the
limits of the fixed infrastructure which led to UAVs being de-
ployed for dynamic capacity enhancement [15, 16]. Adding a
vertical dimension to the network greatly enhances the possi-
bilities in terms of the interaction of the users with computa-
tional resources. Accordingly, one of the main features of next-
generation systems is expected to be their dynamically provi-
sioned 3-Dimensional (3D) structure which leads to many op-
portunities in terms of QoS and user experience [17]. In a typ-
ical edge computing scenario, computational offloading would
end either in an edge server or in a cloud server in the 2D terres-
trial networks. Cloud servers, although providing seemingly in-
finite computational capacity, due to latency may be prohibitive
or cause low QoE. In that respect, by adding a new dimension
using UAVs and other HAP entities, the overall capacity is con-
siderably enhanced and access becomes agile which leads to
the server selection process to be more versatile. Since differ-
ent application types would have instant access to the dynam-
ically arranged computational array of resources in the air, as
well as terrestrial ones, this architecture will provide a dramat-
ically increased QoE offerings. Moreover, air computing will
also address users or autonomous entities in the air. A user in
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an air vehicle can perform computational offloading to other air
units and/or terrestrial servers, which manifests itself as a ca-
pacity enhancement. As shown in Figure 1, the offloading can
be directly from the air vehicle or indirectly via routing over a
LAP or a HAP before it is sent to the corresponding server.

A suburban area consists of residential homes and has less
population density than the urban area. Hence, the communica-
tion infrastructure is not as pervasive as in the urban area which
results in fewer resources for the computational needs of the
applications. Even though the cloud servers can be reachable
via existing infrastructure, the latency would be high for many
applications which require low latency for the QoS. Therefore,
using LAP and HAP layers as the vertical networking for the
suburban areas will increase QoE. The first effect would be on
the capacity of the area as new resources can be available for
the applications of the users. The second influence would be on
the latency since time-critical applications can use the compu-
tational sources of LAP vehicles for their corresponding tasks
without using the cloud resources that cause high delay. Third,
the coverage in the area can be enhanced by placing the UAVs
into the corresponding places and the connection would not be
interrupted [15, 18].

In the rural area, we assume that there is an environment
in which people perform different activities such as sailing,
kayaking, climbing, trekking, and camping. The essential fact
is that the communication infrastructure may not exist or ex-
ist with extremely limited capacity. Moreover, accessing the
cloud server is not always possible. In these circumstances,
air computing can be used to meet essential QoS requirements
since users would utilize fundamental resources for their appli-
cations. Even though LAP and HAP platforms are the backbone
of the air computing, LEOs are generally used in rural areas
since the replacement and energy refilling could be important
issues for air vehicles such as UAVs. By deploying LEOs as
the computational server or as the relay node that offloads the
corresponding tasks to the suitable server, the end-user can en-
joy the benefits of the applications also in rural areas.

2.1. Differences Between Air and Edge Computing
Since several application types such as image rendering,

video editing, and simulation require intensive computation,
cloud computing is proposed as the possible solution regard-
ing CPU and battery constraints of end-devices [19]. However,
with the proliferation of versatile devices and corresponding ap-
plications known as the Internet of Things (IoT), cloud com-
puting could not meet the low latency requirements [20]. As
a result, several computation architectures including Cloudlet
[21], MEC [22], and Fog Computing [23] have emerged. In
the literature, these architectures are named under the umbrella
term edge computing [24] which is also used in this study. The
general architecture of edge computing is shown in Figure 2.

The main idea behind the edge computing is that processing
the computation-intensive tasks, which cannot be processed in
the end-device due to CPU and battery limitation, in the suit-
able server in the Local Area Network (LAN). Moreover, the
concept can be enhanced to Metropolitan Area Network (MAN)
due to scarce capacity [20]. In that case, the most suitable server

Users

Cloud

Edge 
Server

Core Network

Figure 2: Edge Computing.

in the MAN is selected for the corresponding application. Fur-
thermore, cloud servers can also be used with edge comput-
ing for latency insensitive applications in order to serve more
users. In general, edge computing is used for many application
domains such as agriculture, healthcare, smart home, robotics,
data processing, video analytics, and virtual reality [25, 26].

The capacity of the networks considering 2D terrestrial re-
sources is limited to serve very dense mobile and IoT devices.
To solve these issues, air computing provides a third layer
which is the air including LAP, HAP, and LEO layer to enhance
the 2D computational paradigm into 3D. The 3D structure is
also considered as vertical networking and it provides important
solutions that cannot be given by traditional edge computing.

As shown in Figure 3, one of the most important differences
between edge and air computing is the direction of the com-
putational task offloading. In edge computing, the direction is
horizontal as computational resources are inside the terrestrial
2D area. Moreover, these directions are always one way that is
from the user device to the corresponding server. An offload-
ing of a task or a request comes from the user application to
the server and then the server process the task in order to give
the suitable service. On the other hand, in air computing, the
direction of the computational offloading can be both horizon-
tal and vertical. An application would benefit from terrestrial
resources and air platforms at the same time. Furthermore, the
vertical case of the computational offloading may be in both di-
rections. A typical user in an urban area can use the resources in
the air and, conversely, an application in an air vehicle can also
benefit from the terrestrial servers. The important differences
between edge and air computing are summarized in Table 3.

2.2. Advantages of Air Computing
Air computing has many advantages that can be categorized

as offloading, content caching, latency, computational capabil-
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Figure 3: Direction of the computational task offloading in air and edge com-
puting.

ity, coverage, and mobility. In this subsection, we explain those
advantages in detail.

2.2.1. Offloading
The main advantage of air computing regarding offloading

is the vertical network opportunities. Unlike traditional edge
computing which is based on terrestrial resources, air comput-
ing employs a wide variety of computational technologies in
air layers each with a different degree of geographical and mo-
bility capabilities. Moreover, air components not only add a
new physical dimension to the overall infrastructure but also
their ability to be dynamically arranged creates a vision where
the system can swiftly adapt itself to the ever-changing con-
ditions of the users, applications, and the network itself. This
allows air computing to adequately respond to the full spectrum
of application profiles including ones with stringent latency and
computational requirements.

We can detail the advantages of air computing for offloading
in three different scenarios. In the first scenario, we can as-
sume that a user device in a terrestrial place decides to offload
an atomic task of an application which cannot be processed in
the device itself. Hence, the task can be offloaded to either ter-
restrial resources or air components. If terrestrial servers are se-
lected for the offloading, the corresponding procedure would be
similar to the edge computing process in which the task is pro-
cessed on the server and then the results are transmitted to the

Table 3: Important Differences between edge and air computing
Feature Edge Computing Air Computing
Network Architecture 2D terrestrial 3D vertical
Typical Latency < 10 ms < 5 ms
Mobility < 500 km/hr < 1000 km/hr
Coverage Cell-based Cell-less
Offloading Direction Horizontal one-way Vertical two-way
Bandwidth Static Dynamic

user. However, in contrast to edge computing, if edge servers
in the terrestrial area cannot serve due to their limited capac-
ity, the tasks can be offloaded to air components rather than
the cloud servers. This is a crucial advantage of air comput-
ing since blockage-free air routes and dynamically provisioned
servers would provide lower latency.

In the second scenario, we can assume that tasks are non-
atomic and different parts of the main task can be processed in
different resources in an air computing environment as shown
in Figure 4. Since coverage is not a problem in vertical net-
working as in the case of traditional 2D networking, the corre-
sponding partial tasks may be sent to the terrestrial resources
in other regional domains if capacity problems occur in the air.
As the communication would be in very high bit rates and the
air resources would be in the vicinity, the latency may not be
an important issue in this situation. Thus, partial offloading can
be carried out more efficiently in air computing. On the other
hand, if only the terrestrial resources are used for this purpose,
this scenario can cause capacity problems regarding the pro-
cessing if the number of users and their corresponding tasks are
high with respect to the resources. Moreover, sending partial
tasks to different terrestrial resources may cause congestion in
particular parts of the network regarding the link capacity and
user density.

The third scenario for task offloading in air computing is that
the tasks can be offloaded from the air to the ground. This is
crucial since without air computing, users in the air must use
the device capabilities, resources of the air vehicle, or relay ca-
pabilities of Geosynchronous Equatorial Orbit (GEO) satellites
which results in low QoE. Now, through air computing, the
tasks can be offloaded to terrestrial sources with low latency
and applications can enjoy the benefits of the corresponding re-
sources. Moreover, since air components can cover a large area,
different tasks may be offloaded to different terrestrial areas.

2.2.2. Content Caching
Content caching is one of the important practices in order to

access the requested pages, tools, and applications with low la-
tency. Therefore, content caching optimization contains three
objectives including QoS guarantee, content popularity, and
utility maximization [27, 28]. To this end, hit ratio is used as the
primary metric to indicate the quality of the content caching op-
timization. Especially, when the storage capacity of the corre-
sponding servers is insufficient, the quality of the optimization
would be more important.

By using vertical networking through air computing, the ca-
pacity is enhanced regarding two possible methods. First, stor-
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Figure 4: Subtasks of a single task can be processed by different components
of an air computing environment.

age of the air vehicles can be used for this purpose. As a result,
the capacity can be improved and more content can be reach-
able by users. In the second method, air components would be
used as a relay for the request and the corresponding content
can be reached through nearby terrestrial servers. This method
can provide lower latency than using WAN.

Even though air computing has important features for con-
tent caching in the urban area, its main advantage manifests
itself in suburban and rural areas as the communication infras-
tructure is less developed. Considering the fact that even cloud
resources cannot be reachable in rural areas, the importance of
air computing would be better recognized. However, since us-
ing UAVs would be less efficient as they need corresponding
battery charging stations which cannot be found in the rural
area, HAPs and LEOs are more suitable to use. As both air
platforms can provide content caching, the QoE of users would
be enhanced.

2.2.3. Latency
Regarding the QoS, one of the most important metrics for

a computation paradigm is latency. Since users would like to
obtain the corresponding content or result as quickly as pos-
sible, providing low latency is critical. Air computing makes
use of vertical networking opportunities to provide low latency
for specific scenarios. This allows air computing to support
diverse application profiles such as remote health, mobile aug-
mented reality, and natural disaster emergency intervention. In
traditional terrestrial networking paradigms such as edge com-
puting, the range of the servers is crucial for the latency even
though edge servers are located at the LAN or MAN. On the
other hand, as air computing allows for the dynamic placement

Figure 5: Air components can be replaced in the environment dynamically
based on the changing user demands in particular locations.

and provisioning of resources in places needed, typically la-
tency would be independent of the geographical location of the
users as shown in Figure 5. This advantage also provides im-
portant stability in terms of QoE.

2.2.4. Computational Capability
Even though the computational power of the air vehicles is

not as powerful as the terrestrial servers, the tasks of appli-
cations can be offloaded to multiple sources to enhance the
throughput. Moreover, by using both terrestrial servers and
air components, a single task may be partitioned to be pro-
cessed. Since the data rate would be higher and latency would
be lower in air computing regarding edge computing, using sev-
eral sources in different layers for a single task would increase
QoE.

2.2.5. Coverage
Since air vehicles and their corresponding components are

used in air computing, the end devices will not depend on the
cell infrastructure in which there is a limited capacity regarding
the number of users. As shown in Figure 6, this cell-less struc-
ture will provide pervasive connectivity which is crucial for the
heterogeneity of future applications.

2.2.6. Mobility
As a result of seamless coverage and pervasive connectivity,

air computing provides high mobility which is over 1000 km/hr.
Moreover, since air components communicate with each other,
handover for the processed tasks of users that are in the air or
terrestrial vehicle is carried out more smoothly. Furthermore,
mobility in air computing can be considered for the users in the
air and ground. Accordingly, the processed tasks can also be
sent to the terrestrial servers from the air or vice versa.
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3. Air Computing Use Cases

The actions that can be taken in air computing are similar
to edge computing as they include computation/task offloading,
resource allocation, and resource provisioning. However, since
air components provide important flexibility regarding vertical
networking, the use cases in air computing are more versatile
than edge computing. To this end, we elaborate on the potential
use cases of air computing in this section.

3.1. Natural Disasters
Natural disasters such as earthquakes, hurricanes, tsunami,

and floods wreak havoc on settlements and residential areas.
They cause the loss of human lives and the destruction of impor-
tant resources that people need. Considering communication
perspective, there would be two important consequences. First,
the communication facilities would be destructed by the natu-
ral disaster and as a result people can be deprived of important
resources that cause isolation in the disaster site. This is crucial
for those people affected by the disaster because they cannot
obtain the required aid which must be given to the heavy injury
cases and also to humans that expect to be rescued. Without
communication resources, the outcome of the disaster would
be much worse. Secondly, even in the cases where communi-
cation facilities are not seriously damaged, bursty traffic caused
by people that want to make an emergency call and to reach
their friends, and relatives brings about congestion in the net-
work. Note that this congestion can be also caused by the peo-
ple outside the disaster site since they also would like to reach
the people that are affected by the disaster. Similar to the first
case, as a result, people can be isolated in the disaster site so
that the outcome of the disaster would be heavier.

Considering both cases, the essential requirement for provid-
ing the communication and computation in a disaster site is to
enhance the capacity dynamically. This can be carried out by
using air components of air computing including UAVs, HAP
vehicles, and LEOs [29, 30]. Note that the utilization of those
components depends on the disaster type. For example, if the
disaster is a hurricane, UAVs and HAP vehicles cannot be used
during the disaster. Similarly, if the disaster is an earthquake
or a flood, using UAVs would be more effective considering the
latency which is a crucial metric for these scenarios.

3.2. Well-being Monitoring
In the event of a medical crisis elderly people who suffer

from chronic diseases may require real-time action where high
latency would be fatal, especially in rural areas. Therefore,
well-being monitoring must be provided such that the latency
should not be destructive for the patients. As traditional meth-
ods may not ensure low latency, air computing can be used for
this purpose [31, 32]. For the urban areas, air computing may
be utilized as the complementary resource regarding capacity
since the corresponding wireless networks can handle most of
the requests. On the other hand, for suburban and rural areas, air
computing would be the primary resource for well-being moni-
toring. By using the coverage, latency, and data rate advantages
of air computing, the Quality of Life (QoL) of those patients
can be enhanced.

Figure 6: Cell-less structure through air components would provide seamless
connection for end-users.

3.3. Remote Health

The issues in remote health are similar to those in well-being
monitoring, however they are more critical as medical opera-
tions are carried out in this case. The scope of remote health in-
cludes the actions of doctors and monitoring the results of those
actions on the patients in operations. Moreover, critical life-
related metrics such as heart beating, and adrenalin level must
be constantly monitored in the operation. To this end, air com-
puting provides important opportunities in this area through its
paradigm and corresponding components. For example, if the
patient or doctor cannot move from one place to another due to
several reasons, the operation can be carried out from a remote
area where the doctor leads it.

3.4. Real-time Video

Since real-time video requires a constant bit rate through the
lifetime of the video, ensuring the desired QoE is more difficult
than the video on demand systems in which the delay can be
compensated using dynamically changing buffers. This issue
is experienced differently by two main use-cases: (1) real-time
conferences/calls such as Zoom and Skype, and (2) watching
sports activities.

The fundamental problem in the real-time video for sports
events through the Internet is that viewers obtain the content
with higher delay regarding terrestrial broadcast. As a result,
QoE reduces significantly as viewers may hear the sound of
terrestrial broadcast viewers when an important incident has
occurred in the event including a football or basketball com-
petition. On the other hand, in conferences and calls, the video
can stall or the voice cannot be synchronized with the video due
to jitter or congestion in the network.

Air computing can provide a possible solution which pro-
poses a novel architecture for video streaming using air com-
ponents as shown in Figure 7. In this solution, the video seg-
ments are routed via different components including terrestrial
servers, UAVs, HAP vehicles, and LEOs based on the current
requirements of the network and video. Note that this approach
may bring about its own challenges considering scheduling and
management of segments and user profiles. However, by us-
ing the underlying technology and novel utilization of the air
components, the problems above can be solved.
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Figure 7: Various representations of the video segments as conveyed by differ-
ent components of air computing.

3.5. Mobile Augmented Reality
Augmented Reality (AR) in which the real and virtual ob-

jects are combined has been used in many application areas in-
cluding entertainment, healthcare, and education [33]. More-
over, since they perform in real-time, augmented reality appli-
cations are delay intolerant in order to provide satisfactory QoE
for end-users [34]. Especially, after the widespread usage of
smartphones with their expanded capabilities, augmented real-
ity applications are widely deployed. To this end, AR is recently
named as Mobile Augmented Reality (MAR).

The most significant difference between AR and MAR is
their processing methods. While traditional AR applications
perform in-device processing, MAR uses offloading to carry
out corresponding computations [35]. The main reason for of-
floading in MAR is the limited capacity of mobile devices re-
garding battery and CPU. Therefore, edge and cloud comput-
ing have been broadly utilized by MAR applications in recent
years. However, since the application requirements of MAR
has changed over the years, traditional edge solutions may not
be sufficient to provide required latency and capacity.

Air computing can solve the issues related to MAR includ-
ing scalability, latency, and expected data capacity indicated in
[35]. The scalability problem can be handled by multiple com-
ponents of air computing that can be reachable via seamless
connection. Even though users are outside of the urban ar-
eas, air components can handle MAR tasks considering latency.
Moreover, a huge amount of data can be transferred using the
advantages of 3D network structures.

3.6. Sport and Concert Activities
The communication infrastructure in terrestrial areas is built

considering fixed resources in which once the facility is de-

Figure 8: Dynamic network capacity enhancement by air components for orga-
nization with intense participation.

ployed, it can be changed with difficulty and significant addi-
tional cost. Considering Capital Expenditures (CAPEX) and
Operating Expenses (OPEX) of companies, investing on fixed
resources was plausible over years. For example, if there are
limited resources such as base stations for users that increase
in years, improving the capacity which means adding new base
stations could be the solution for this problem. However, espe-
cially after the proliferation of the versatile application types in
smartphones, the fixed infrastructure may not be sufficient for
the user needs that change dynamically.

One of the most important examples of this situation is the
sport and concert activities where thousands of people rally
and use their applications. Statically built infrastructures un-
dergo a significant amount of traffic and computational offload-
ing which may be an order of magnitude higher than the ex-
pected requests. Even though network slicing, Network Func-
tion Virtualization (NFV), Software-Defined Networks (SDN),
and edge computing are used to provide a solution, the issue is
still open. On the other hand, by using air components and di-
recting them to the corresponding places where activities occur
based on the current network requirements, we can increase the
capacity of the network dynamically [36] as shown in Figure
8. Hence, even though the network resources cannot meet the
number of application requests, new resources and routes can
be created through air computing. As a result, QoS and QoE
would be enhanced.

3.7. Outdoor Activities
Since people that perform outdoor activities including sail-

ing, kayaking, climbing, and trekking may not access corre-
sponding resources due to lack of communication infrastruc-
ture, they can face isolation in the natural environments. This
situation would be crucial considering several issues. In the
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Figure 9: Leveraging communication through air computing for outdoor activities.

case of an injury or a health problem such as a heart attack,
emergency services must be accessed immediately in order to
obtain the aid. Regarding the current networking conditions,
the communication and computation from secluded areas in-
cluding sea, mountain, and forest cannot be provided properly.
Thus, even though there would not be such a problem, people
carrying out the activities do not feel safe about those possible
issues. Apart from the health, daily routines such as social me-
dia, communication via chat, and telephone call also cannot be
carried out in those conditions. Hence, even though those activ-
ities provide important relief for people, their life quality may
have deteriorated.

Through air computing, the issues for outdoor activities can
be solved as shown in Figure 9. By deploying UAVs, HAP
vehicles, and LEOs in suitable places, people in secluded areas
can reach important contents and communication infrastructure
[37]. We assume that HAP and LEOs would be more useful
for such activities as UAVs may face battery reload problems
which is similar to the situation in rural areas.

4. Components of Air Computing and Their Applications:
Edge, LAP/HAP, LEO

Air computing is made up of a variety of technological ele-
ments. In this section, we review individual elements, and dis-
cuss their benefits and contributions in the use-cases. Moreover,
their open issues are also focused on and how air computing
may serve as a remedy is put forward.

4.1. Edge Computing
Even though vertical networking adds another dimension to

the current network infrastructure in air computing, the essen-
tial element in an urban area would be edge computing as it
is deployed widely. As a result, determining a profitable edge
strategy is still important [38]. In this section, we investigate
the most recent edge computing studies considering resource
allocation, task offloading, edge caching, and energy efficiency
issues. Moreover, we give an evaluation of selected edge stud-
ies in Table 4 and analyze them considering the benefits of the
air computing.

4.1.1. Resource Allocation
Along with the computation/task offloading, resource alloca-

tion is one of the primary research issues in edge computing
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because of the new generation application requirements includ-
ing transmission bandwidth, latency, energy consumption, and
reliability [38, 39]. In [40], authors perform intelligent task
execution using Deep Neural Network (DNN) partitioning re-
garding heterogeneous edge server capacities. They propose a
joint method considering cost-effective resource allocation and
self-adaptive DNN partition in order to provide collaborative
computation between IoT devices and edge servers. Lieang
et al. focus on the challenge of handover between base sta-
tions considering the management of computation and radio
resources [41]. Therefore, the goals in this study consist of
maximizing the throughput and minimizing the handover cost.
Chen et al. propose a cache-assisted multi-user MEC mecha-
nism considering to cache executive codes of tasks proactively
[42]. Their goal was to reduce the task execution delay and
energy consumption of users. Xia et al. consider the prob-
lems including resource allocation on demand for limited edge
servers, and developing heterogeneous task offloading strate-
gies [43]. To this end, they implement an online distributed op-
timization algorithm based on game theory to perform optimal
offloading and energy harvesting decisions. Bahreini et al. de-
velop an auction-based mechanism by addressing the resource
allocation and monetization challenges in MEC [44]. They fo-
cus on the dynamic provisioning of computing resources since
the tasks of users are heterogeneous. On the other hand, Roost-
aei et al. investigate Stackelberg game based distributed algo-
rithm [45, 46] in order to dynamically allocate and price edge
resources [47]. Zhao et al. develop a hybrid system consid-
ering beamforming and resource allocation [48]. They bene-
fit from the advantages of mmWave communications indicated
in [49] in order to optimize beamforming vectors at users and
base stations to minimize the maximum delay. In [50], Wang et
al. focus on the challenges of limited capacity of edge servers
in a heterogeneous multi-IoT environment. To address this is-
sue, they propose a weighted cost model which is solved by a
Deep Reinforcement Learning (DRL)-based algorithm consid-
ering dynamic and stochastic edge computing environments.

4.1.2. Task Offloading
Task offloading is the most crucial issue in edge computing

regarding QoS of IoT devices and their corresponding appli-
cations [20]. The performance of task offloading is generally
evaluated with other metrics such as energy efficiency and edge
caching hit [56]. Peng et al. used three constrained multiob-
jective algorithms considering time and energy consumption in
order to solve the computation offloading problem in an edge
environment [57]. Feng et al. on the other hand focus on differ-
ent requirements of mission-critical applications regarding their
priorities [52]. To this end, they benefit Lyapunov optimization
considering the energy consumption of resources [58]. How-
ever, they use only a single edge server in their experiments.
Chen et al. on the other hand, develop a system that jointly op-
timizes task assignment and offloading scheduling in order to
minimize maximum completion delay [59]. For this system,
they also consider different communication and computation
capabilities. Xue et al. develop a dynamic incentive mechanism
to investigate the problem of the task offloading and resource

allocation [53]. They consider a multi-user and multi-vehicle
system. They use the Stackelberg game for the interaction be-
tween MEC service provider and user equipments (UEs). In
[60], authors focus on data caching and computing offloading
in a two-tier MEC environment. They consider the constraints
of tasks in terms of the delay and the minimization of the net-
work cost at user. However, they do not include mobility for the
users and cloud option for offloading. Xu et al. investigate the
performance of task offloading in High-Speed Railways (HSRs)
considering proper data routing paths for each offloaded task
[61]. Since handovers are frequent in HSRs, they focus on how
frequent handovers in uplinks and downlinks affect offloading.
In [62], Zhang et al. focus on autonomous manufacturing by
considering their delay sensitivity. To this end, they propose a
risk-aware cloud-edge computing framework by developing a
branch-and-check approach for solving the nonlinear program-
ming problem. Yang et al. propose a Machine Learning (ML)
solution to solve the offloading problem in MEC [63]. They
train and jointly optimize the offloading decisions and resource
allocation. Li et al. focus on caching techniques to optimize
QoS in MEC [64]. They propose three algorithms to forecast
the next executing task. Moreover, they jointly consider cache
hit rate and load balance of edge servers.

4.1.3. Energy Efficiency
Since the battery capacity of IoT devices is limited, and ser-

vice providers would like to lower their expenses regarding
power consumption of edge servers, energy efficiency is an im-
portant research topic in edge computing. In [54] authors focus
on minimizing the energy consumption and task processing de-
lay in this study. For that purpose, they develop an evolution-
ary algorithm that finds the best trade-offs between energy con-
sumption and processing delay. Song et al. consider minimiz-
ing the energy consumption of mobile devices when executing
corresponding tasks at satellites [65]. Moreover, their model
provides MEC services using LEOs for mobile devices in dis-
aster areas. Chen et al. investigate energy-efficient offloading
considering QoS requirements of DNN-based smart IoT sys-
tems [55]. To this end, they design a self-adaptive particle
swarm optimization algorithm for the corresponding energy-
efficient offloading strategy. In [66], authors develop a multi-
armed bandit algorithm to provide a solution for the server se-
lection problem in edge computing. They define corresponding
reward and cost terms considering the energy and required time
in offloading rounds. Zhou et al. focus on energy-efficient ser-
vice migration in considering MEC-enabled dense cellular net-
works [67]. They formulate the service migration process as a
Mixed-Integer Nonlinear Programming (MINP) problem. They
also use the Lyapunov optimization technique to decouple the
migration process.

4.2. LAP
Since providing Line of Sight (LoS) links has many advan-

tages in terms of connectivity, service provision, and latency,
UAVs have been deployed in many areas especially remote lo-
cations. However, this deployment also brings its own issues in-
cluding mobility management, UAV networking management,
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Table 4: Evaluation of Selected Edge Studies
Study Category Goal Solution Open Issue Benefits of Air Computing
[40] Allocation Providing both computa-

tion efficiency and cost ef-
fectiveness to accelerate
DNN-based task accelera-
tion in the MEC

A joint method by
a self-adaptive DNN
partition with cost-
effective resource al-
location

Only a single
edge server is
used

With multiple components,
it can increase the capacity

[41] Allocation Maximizing the sum of-
floading rate, quantify-
ing MEC throughput, and
minimizing the migration
cost

They relax the corre-
sponding binary vari-
ables in the original
problem to overcome
non-convex issue

Energy efficiency
regarding edge
servers is not
considered

3D network structure would
alleviate the handover prob-
lem

[42] Caching A cache-assisted multi-
user MEC mechanism

They formulate a
non-linear program-
ming problem which
involves a joint
optimization

There is no mo-
bility

UAVs can be helpful for
caching important contents

[51] Caching They investigate the coop-
eration problem of edge
nodes in MEC

They use Lagrangian
multipliers and then a
distributed optimiza-
tion algorithm

There is no mo-
bility and han-
dover considera-
tion

Vertical networking would
increase capacity for
caching based on air com-
ponents.

[52] Offloading A priority-differentiated
offloading strategy that
considers the stringent
QoS requirements of
mission-critical services

They use Lya-
punov optimiza-
tion for priority-
differentiation

Only a single
edge server is
used

Mission-critical applications
can be handled very well
regarding multiple compo-
nents of air computing.

[53] Offloading Task offloading for multi-
user and multi-vehicle in
vehicular MEC

They propose a
dynamic incentive
mechanism

Mobility model is
not clear

Seamless connectivity can
alleviate the problems in ve-
hicular MEC systems

[54] Energy Minimizing both the
energy consumption and
task processing delay of
the mobile devices

They propose an evo-
lutionary algorithm
that can efficiently
find a representative
sample of the best
trade-offs

There is no mo-
bility and cloud
consideration

Multiple air components can
alleviate the trade-offs be-
tween offloading and energy
consumption

[55] Energy Energy-efficient offload-
ing for DNN based smart
IoT systems

They propose a
swarm optimization
algorithm for energy-
efficient offloading
strategy

There is no mo-
bility

With the offloading to differ-
ent nodes in the air, it may
reduce energy consumption

and flight formation [68, 69]. To this end, we categorize and
evaluate these issues under trajectory planning, task offloading,
placement of UAVs, and energy consumption.

4.2.1. Trajectory Planning
In order to provide efficient on-demand services, trajectory

planning is crucial for UAVs [70, 71]. Moreover, optimiza-
tion of the pre-defined paths based on the dynamic events is
also critical for the performance of UAVs in terms of QoS [72].
Zhao et al. investigate a proactive mobility management solu-
tion for users’ trajectories in order to deploy UAVs dynamically
in the network [73]. To this end, they propose a distributed
learning framework in which edge servers are considered as lo-
cal data owners that collect connection data. Wang et al. aim at
minimizing the energy consumption of users in the network by
considering the resource allocation and trajectory of UAVs [74].
They propose two solutions: (1) convex optimization based tra-
jectory control algorithm to minimize energy consumption, and
(2) DRL-based trajectory control algorithm for real-time deci-

sions. Similarly, authors in [75] propose that the trajectory of
UAVs can be approximated using traditional convex optimiza-
tion approaches and discrete variables. Liu et al. optimize UAV
trajectories considering energy consumption [76]. They formu-
lated the problem as Markov Decision Process (MDP) and pro-
posed DRL with a double q-network. Wang et al. proposed a
multi-UAV communication system for 6G in which they con-
sider UAV trajectories and radio resource scheduling [77].

4.2.2. Task Offloading
One of the most important motivations for the deployment of

UAVs is the computation rate maximization of applications by
using task offloading [78, 79]. Through task offloading via Line
of Sight, the burden on the edge servers would be alleviated and
required QoS can be provided. Seid et al. study on minimiza-
tion of the computation costs in terms of energy consumption
and computation delay [80]. They propose a Multi-Agent Deep
Reinforcement Learning (MADRL)-based approach in a multi-
UAV enabled IoT edge network using a single centralized SDN
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controller. In [81], the authors propose an offloading system
in which users can perform partial offloading regarding UAVs
and MEC servers. They formulate the problem as a maximiza-
tion problem and use the principles of Prospect Theory [82].
Haber et al. on the other hand focus on mission-critical appli-
cations that require ultra-reliable low-latency computation of-
floading [18]. They use UAVs considering the maximization
of served request rate and the optimization of UAVs’ positions
with the offloading decision. Zhan et al. propose a framework
for a multi-UAV enabled MEC system in order to maximize the
number of served IoT devices regarding computation offload-
ing and resource allocation [83]. Zhao et al. proposed a col-
laborative task offloading approach in a multi-UAV multi-MEC
system considering energy consumption, and UAV trajectory
[84]. For this purpose, they use a cooperative MADRL method
in which the policy gradient algorithm is utilized. Diao et al.
investigate the usage of UAVs as relay nodes considering emer-
gency conditions [85]. Moreover, they consider energy con-
sumption minimization by optimizing offloading and schedul-
ing. Zeng et al. focus on multi-UAV assisted MEC environment
in order to maximize revenue of ground users considering the
offloading of multi-user scenarios [86]. To this end, they take
different time sensitivity of each user task into account and con-
struct a two-hierarchy Stackelberg game framework model. In
this model, UAVs are considered as leaders performing location
deployments and users are the followers that perform offload-
ing selections. In [87], Shi et al. propose a model-free DRL
offloading scheme based on considering the dynamic channel
state, renewable energy utilization, UAVs trajectory, and tasks
offloading ratio. To perform this, they use Twin Delayed Deep
Deterministic Policy Gradient (TD3) algorithm.

4.2.3. Energy Consumption
Even though energy consumption is considered as a perfor-

mance metric that is evaluated in studies along with the other
issues such as task offloading, and trajectory planning, some
studies take energy efficiency into account as the main problem.
Ji et al. consider nonorthogonal and orthogonal multiple access
modes for a UAV-assisted MEC system and focus on weighted-
sum energy consumption [88]. To this end, they propose alter-
nating iterative algorithms in order to optimize UAV trajectory
and resource allocation. The goal of Li et al. is to create a
model for UAV-assisted MEC by considering energy-efficient
UAV trajectory design and optimized computation offloading
[89]. They also consider partial offloading in this study. Chen
et al. focus on ultra-dense networks considering the resource
allocation problem by maximizing energy efficiency [90]. They
used UAVs as flying base stations (BS) and utilized DQN as
the solution technique. Liu et al. aim to minimize the energy
consumption of users by optimizing relay and computing fea-
tures of UAVs [91]. They use an iterative algorithm to solve the
non-convex problem. Li et al. investigate the optimization of
energy efficiency in an UAV-assisted network in which UAVs
are used for an energy station and MEC server [92]. Their goal
is to maximize average energy efficiency in the network by con-
sidering user transmit power, user computing frequency, UAV
transmit power, bandwidth allocation, and UAV trajectory plan-

ning. They use a proximal policy optimization algorithm as a
DRL agent.

4.2.4. Placement
The placement of UAVs is substantial as coverage provides

connectivity that enhances the network capacity in terms of
the data transmission and computation [93]. Moreover, their
utilization in poorly covered terrestrial regions would increase
end-users QoE [94]. Therefore, placement optimization would
be crucial for the performance of the UAV-based network along
with the trajectory planning [95, 96].

In [97], Lui et al. use actor-critic methods in DRL in order
to provide connectivity between UAVs so that they can cover
required areas to improve QoS. Wang et al. optimize the place-
ment of the UAVs considering the offloading decision and re-
source allocation in a multi-UAV-enabled MEC environment
[98]. They propose a two-layer optimization method to solve
the problem. On the other hand, Yuan et al. focus on the dy-
namic placement of UAVs in a vehicular network [99]. They
utilize the actor-critic DRL approach to carry out real-time UAV
placement. They also consider UAVs’ flying range, communi-
cating range, and energy resources. Abdelhakam et al. focus
on strong co-channel interference that can be caused by line-of-
sight channels between UAVs and the ground terminals [100].
To solve this problem, they propose a Coordinated Multi-Point
(CoMP) technique considering the deployment of UAVs in a
multi-UAV-assisted IoT network.

4.3. HAP Components and LEO Satellites

Considering the limited battery energy and cell-based cov-
erage of UAVs, HAP and LEO layers provide important ad-
vantages regarding long-distance communication, energy con-
sumption, and management opportunities. Moreover, their per-
formance would not be affected by the weather conditions due
to their high altitudes as 10 - 30km for HAP components, and
160 - 200km for LEO satellites.

The main goal of the deployment of the HAP components is
to provide connectivity such as Internet access, and to perform
as a controller node for the UAVs [15, 101]. However, in certain
circumstances, such as a congestion in the lower layers, they
can be used as an edge computing server or a relay node. Since
their coverage is on a regional scale, UAVs that can be consid-
ered as dynamic cells can reach the corresponding resources in
a particular area via HAP components. Even though this is one
of the reasons that the deployment of HAP components is gen-
erally in urban and suburban areas, maintenance issues based
on energy consumption also cause an important restriction for
their deployment in rural areas.

On the other hand, the essential use case of the LEO satel-
lites is to meet the coverage problems of rural areas where in-
frastructure for the communication is insufficient. They can be
deployed for months thanks to their efficient energy consump-
tion, however they are not recoverable after their deployment.
Moreover, they cannot be used for low latency applications due
to their high propagation delay. Therefore, they can be used as a
complementary resource for urban and suburban areas in order
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Table 5: The Summary of Main Differences Between Air Layers
Issue LAP HAP LEO
Altitude Less than 10km 10 - 30km 160 - 2000km
Propagation Delay 10 - 30 µs 50 - 85 µs 1.5 - 3ms
Coverage Scale Cell Regional Continental
Main Deployment Urban Areas Urban and Suburban Areas Rural Areas
Low Latency Apps It can be provided since un-

derlying wireless communica-
tion infrastructure may ensure
the corresponding requirements.

It depends on the channel and
weather conditions regarding
propagation delay.

Because of the high altitude
and propagation delay, satellites
cannot provide the requirements
of low latency applications.

Main Use-cases Seamless mobility is ensured
through UAVs. Moreover, com-
ponents in this layer provide ei-
ther edge computing solutions
or access to edge servers.

Airplanes and balloons can be
used as management nodes for
UAVs considering their regional
coverage. Furthermore, they
can also be used for edge com-
puting purposes.

Satellites can perform edge
computing solutions however
their service would be limited
due to their low on-board ca-
pacity. Therefore, they are gen-
erally used to access the cloud
computing solutions.

Performance As UAVs can be configurable
easily regarding their stationary
position, they can use their ca-
pacity effectively based on the
user density.

Even though their configurabil-
ity is not flexible as UAVs, bal-
loons and aircrafts may provide
a relative stationary position.
However, they cannot use their
capacity as efficient as UAVs.

Due to their high speeds and
their deployment in underpopu-
lated areas, some of the capacity
of satellites would be wasted.

Maintenance Even though UAVs provide im-
portant flexibility in dynamic
environments, they need charg-
ing stations. Moreover, their
maintenance would be daily due
to their limited battery capacity.
They can be reusable multiple
times.

Balloons and aircrafts can fly
for days based on their fuel ca-
pacity. However, they must
return to their corresponding
bases for maintenance. They
can be reusable multiple times.

Satellites are not recoverable af-
ter their deployment. How-
ever, they can give service for
months.

Energy Consumption The required energy is ensured
from batteries. Their energy
consumption can be heavily af-
fected by winds and weather
conditions especially if they fly
against the wind.

The required energy is provided
from fuels. The effect of the
winds and weather conditions to
the energy consumption is lim-
ited due to their altitude.

They meet the required energy
from the solar power and cor-
responding batteries. Their en-
ergy consumption cannot be af-
fected by weather conditions.

to get access to cloud computing solutions in WAN. Besides,
exploiting services in continental or beyond regional distances
would be more efficient using LEO satellites since terrestrial
nodes may cause high latency [102]. Figure 10 depicts reach-
ing regional and inter-regional resources using HAP and LEO
layers.

It is important to note that when the LEO layer is exploited,
SAGIN is the term that is generally used by studies to indi-
cate the corresponding communication system [7]. In [103],
Tang et al. developed an efficient offloading mechanism for
SAGIN. They benefited from the communication between the
LEO satellite network, LAP vehicles, and terrestrial resources.
To minimize the total delay and to handle the high mobility
of nodes, they proposed a deep reinforcement learning traffic
offloading approach. Chen et al. [104] benefit from satellite
constellations to apply Federated Learning considering commu-
nication overhead and privacy issues. They use four different
modes including remote cloud learning, onboard satellite learn-
ing, federated learning with data sharing, and federated learn-

ing with no data sharing to evaluate the performance of their
system. On the other hand, Guo et al. focus on service coor-
dination between different air layers in SAGIN [6]. Therefore
they separate the requirements of the environment using three
service coordination scenarios: (1) fine-grained, (2) medium-
grained, and (3) coarse-grained. In the fine-grained scenario,
the network in the air is used as complementary regarding the
need for the terrestrial network and ubiquitous coverage. Con-
sidering the delay-sensitive applications, coordination of the
data processing and data communication services is provided
by using medium-grained coordination. Finally, mobility and
the corresponding service migration are ensured using coarse-
grained service coordination.

In [105], Zhou et al. investigate dynamic scheduling prob-
lem in task offloading considering SAGIN environment. They
deploy UAVs as flying gateways in order to perform the offload-
ing decision. Considering the dynamic environment, they for-
mulate the corresponding problem as an MDP and then apply
linear programming. Similarly, Cheng et al. focus on compu-
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Figure 10: HAPs and LEO satellites provide regional and inter-regional access
for LAP components.

tational offloading in SAGIN considering energy and compu-
tation constraints [106]. In their design, UAVs provide edge
computing while satellites ensure access to cloud computing.
To learn the optimal policy in a dynamic environment regarding
large action space and mobility, they use an actor-critic DRL al-
gorithm. In [107], Zhang et al. analyze the architecture and cor-
responding application scenarios of satellite MEC. They pro-
pose network function virtualization and cooperative task of-
floading methods in order to integrate computing resources and
improve the efficiency regarding delay and energy consump-
tion.

Resource allocation and controller placement problems are
also essential for LEO studies. In [108], Chen et al. examine
the dynamic assignment and placement of controllers in SDN-
based LEO satellite networks. They consider two challenges
including highly dynamic topology, and randomly fluctuating
load. To this end, they take propagation and queueing delays
into account and then formulate the adaptive controller place-
ment and assignment problem considering management costs.
On the other hand, Zhang et al. investigate resource alloca-
tion in Non-Orthogonal Multiple Access (NOMA) terrestrial-
satellite networks in which terrestrial and satellite components
use the same spectrum for the communication [109]. Since
the original optimization problem is non-convex, they divided
the original problem into three subproblems including user as-
sociation, bandwidth assignment, and power allocation. In
[110], Dahrouj et al. focus on the user scheduling in integrated
satellite-HAPs-ground networks considering user-connectivity,
backhaul, and power constraints. To this end, they propose a
deep neural network driven optimization for the user scheduling
policies. Their online approach outperforms traditional model-
based optimization methods which fail to meet the QoS require-
ments.

Since each layer is crucial for the performance of an air com-
puting environment, we also summarize their essential features
in Table 5 based on the critical issues. Thus, which layer should

be used for particular requirements can be more distinct.

5. Challenges and Future Research Directions

Even though air computing can solve many issues related to
the limitation of current networking paradigms, it would face
many challenges such as network architecture, regulation of air
vehicles, battery issues, coverage, and a communication pro-
tocol. Considering the fact that UAV communication between
different devices causes many challenges [111], applying dif-
ferent vehicles in the air and providing communication between
them is not trivial.

Therefore, all of these issues must be investigated thoroughly
in order to apply the air computing paradigm correctly. On the
other hand, these challenges open new research areas regarding
the provision of QoS, energy efficiency, determining air vehi-
cle placement, and the deployment of AI. In this section, we
elaborate on those challenges and corresponding research op-
portunities.

5.1. Challenges

We evaluate challenges considering the architecture design
of air computing, corresponding protocol, and flying vehicle
regulations.

5.1.1. Air Computing Architecture Design
Since air computing has a 3D structure with four major lay-

ers including terrestrial, LAP, HAP, and LEO, the networking
architecture in terms of offloading mechanism and routing is
crucial [112]. One of the main concerns in networking is how
the requests would be handled considering the mesh connected
different nodes in the 3D structure. To investigate this, we pro-
pose three candidate design approaches including hierarchical,
free, and hybrid designs. Moreover, we also make a comparison
between a distributed approach and orchestration in air comput-
ing regarding task offloading.

Hierarchical Design - As the name suggests, there is a sys-
tematic order between air computing layers in the hierarchical
design as shown in Figure 11. If a task is offloaded from a
user in a terrestrial network, the selection of the corresponding
server for the computation is handled by another entity in the
air computing environment, not by the user. For example, if
the service for the corresponding application task can be met in
one of the HAP vehicles due to network conditions, the task is
routed regarding a predefined path rather than directly transmit-
ted to the corresponding HAP component by the user. There-
fore, the task is first sent to the nearest edge server in LAN.
If the edge server cannot process the task because of its high
load or its service incapability, the task is relayed to one of the
UAVs in LAP. Note that we assume that the corresponding edge
server is in the vicinity of the UAV. Next, if the UAV similarly
cannot execute the task, it relays the task to one of the UAVs
in its vicinity, one of the available edge servers on the ground,
or one of the airplanes in HAP. Since the corresponding service
has been given in HAP in this case, the task is pushed to the
HAP.
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Figure 11: Architecture of the hierarchical design.

Even though the hierarchical design provides important man-
ageability throughout the air computing environment, it may
face high delays due to its layered structure. Based on the use
cases and user profiles, it can be applied in the network for spe-
cific areas.

Direct Access Design - In contrast to the hierarchical design,
in direct access design, IoT devices in an air computing en-
vironment can select the corresponding server to meet the re-
quirements of their tasks as shown in Figure 12. As a result,
if the corresponding sender knows which server provides the
required service, it offloads the task directly to the appropriate
layer through the seamless connectivity feature of air comput-
ing.

However, this free access for each device in the network
would cause congestion and underutilization of the resources.
In terms of congestion, if a service is given by a particular
server in the network, all devices which require the service may
offload their task to that server. As a result, communication
links and server capacity would be heavily affected by this sit-
uation. On the other hand, if devices use particular servers in
the network due to low delay, high processing, and energy effi-
ciency, some resources would be underutilized.

Hybrid Design - Considering the advantages of hierarchical
design and direct access design, a hybrid design would be ap-
plied in an air computing environment. For the urban areas,
in which the network is extremely dense, the application of hi-
erarchical design would be more suitable in order to prevent

Edge Server

Computational
Offloading

Urban Area

Direct Access

Routed Access

Figure 12: Architecture of the direct access design.

underutilization and congestion cases. Moreover, the delay is-
sue in hierarchical design can be covered by diverse resources
regarding the provision of different services, and seamless con-
nectivity.

On the other hand, considering the suburban and rural areas,
the utilization of direct access design would be more convenient
since the infrastructure in those areas is limited. Therefore, di-
rect access to the corresponding servers can be of benefit in
terms of delay.

5.1.2. Air Computing Protocol
As there are many different entities in the air computing en-

vironment, the communication between them should be carried
out based on predefined rules, which are defined by a proto-
col. An air computing protocol should be reliable, secure, and
fast so that the entities carry out communication easily [113].
Moreover, it should facilitate the management of the network
as it must provide data integrity.

5.1.3. Flying Vehicle Regulations
Since each country has different regulation policies consider-

ing flying air vehicles, the entities in an air computing environ-
ment should comply with those corresponding rules. Moreover,
the air computing protocol should also be in compliance with
regulations as reliable and fast communication is vital for fly-
ing entities in the air. On the other hand, considering the exist-
ing cellular network infrastructure, the standardization between
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existing resources and newly deployed air computing devices
must be investigated for 6G and beyond [114, 115].

5.2. Future Research Directions

We examine future research direction considering request
management, deploying artificial intelligence, energy issue of
air vehicles, and movement/coverage of air vehicles. We be-
lieve that these directions provide important research opportu-
nities for researchers.

5.2.1. Request Management
In an air computing environment, handling user and IoT re-

quests are crucial to meet the required QoS. Moreover, since
there are different layers in the air, the request management
would be more complex than other networking paradigms such
as edge computing. Even though architecture design is essential
for request management, deciding where to offload and when to
offload is crucial for the performance. To this end, the benefits
of a distributed system and an orchestrator-based system must
be investigated thoroughly.

A distributed system in air computing can be described such
that the device which offloads the task takes the decision of
where to offload. For example, users can select one of the edge
servers for offloading, or an edge server relays the offloaded
task to one of the UAVs without consulting any intermediate
device. One of the most important advantages of a distributed
system is its scalability and its low latency. Since there is no in-
termediate element considering the offloading, the transmission
of the request would be faster.

On the other hand, it has a significant drawback considering
the current state of the network. An offloading device in the en-
vironment cannot be aware of the current condition of the cor-
responding servers and network elements in terms of the load
of the servers, and the number of requests that may affect the
communication links. Therefore, if there is no additional com-
munication regarding this information, the decision taken by the
offloading device would cause a failed task offloading. More-
over, note that if an additional communication mechanism is
deployed in the environment, it must be well-optimized so that
the communication links cannot be affected by the transmission
regarding congestion.

In contrast to distributed systems, an orchestrator to which
the tasks are first sent by the offloading devices can be used in
different parts of an air computing environment. In such a sys-
tem, a user can directly offload tasks to the orchestrator. Here
the decision of where to offload is taken by the orchestrator
which has full access to the current system state regarding the
communication links and corresponding servers.

Even though it has advantages, several points must be investi-
gated and optimized in an orchestrator-based system. First, the
deployment of the orchestrator is crucial for the performance of
the system since many entities in the network may send their
corresponding requests. Therefore, it should be reachable in a
suitable time so that it can relay those requests without violat-
ing the maximum delay requirement based on application type.
Second, the centralized deployment of an orchestrator results

in a single point of failure such that the corresponding portion
of the network would be heavily affected as users and IoT de-
vices cannot offload their tasks. To this end, a fault management
system should be considered with the deployment of an orches-
trator. Finally, third, the cost of an orchestrator in terms of new
communication links, delay, and congestion must be minimized
for the system performance.

5.2.2. Deploying Artificial Intelligence
Considering the diverse requirements of various applications

and IoT devices in an air computing environment, traditional
optimization-based solutions and heuristics would provide lim-
ited solutions. Therefore, the application of AI-based solutions
will be inevitable. Especially, regarding edge and UAV-based
systems, there are already many studies which benefit from AI-
based solutions including ML, Deep Learning (DL), and DRL
[116, 117, 118]. As a result, along with the requirements of the
air computing paradigm, novel AI solutions should be applied
to meet new challenges.

Since there are many resources that produce an enormous
amount of data in an air computing environment, processing
them and then learning meaningful patterns considering the per-
formance of the system can be feasible using ML techniques.
However, in recent years, DL solutions have been preferred
rather than traditional ML algorithms since DL is more success-
ful in terms of training, non-linear transformation, efficiency,
and required computing power [119].

Even though DL solutions are preferred in recent studies, the
data collection phase in an air computing environment would
cause serious degradation of system performance. First, the
huge amount of data can bring about congestion problems on
communication links. Second, for such a heterogeneous envi-
ronment, providing the privacy of the data would be difficult.
Therefore, applying Federated Learning (FL) solutions would
be more suitable with air computing [120, 121].

On the other hand, since many decisions must be taken based
on dynamic events in the air computing environment, and they
may not be labeled due to the nature of the problem, supervised
ML and DL based solutions would be inadequate. To this end,
recent studies benefit from DRL in which the agent can learn
directly from the environment without needing human interac-
tion [122]. The agent in an air computing environment can be
the orchestrator, UAV, or edge server since they take actions
based on the current state of the system. Thus, we believe that
future studies can consider the deployment of DRL solutions
along with FL.

5.2.3. Energy Issue of Air Vehicles
The vehicles in air layers use either batteries or fuel. There-

fore, their deployment, trajectories, and computing capacities
should be well-optimized to ensure energy efficiency. As men-
tioned in Section 4, energy-related issues are currently evalu-
ated regarding edge and UAV studies. However, considering all
layers of air computing, a collaboration between different air
vehicles can reduce energy consumption further.
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5.2.4. Movement and Coverage of Air Vehicles
Even though deployment is an important research issue for

2D terrestrial networks, this problem is more difficult to man-
age as air vehicles move. Moreover, since their coverage, trans-
mission quality, and power consumption are heavily affected by
their vertical movement, optimization of their altitude and tra-
jectory is crucial [123, 124]. Therefore, request management
can be handled along with this optimization in order to provide
efficient performance.

6. Conclusion

In this study, we defined a novel, next-generation compu-
tational paradigm called air computing. In the face of ever-
growing application resource demands, air computing strives
to solve bottlenecks and inefficiencies of the computational in-
frastructure by intelligently harmonizing 2D legacy terrestrial
resources with novel 3D vertical networking technologies.

Air computing is indeed based on a family of technologies
such as UAV, LAP, HAP, LEO, and edge computing. In order
to give a complete overview, we first investigated air computing
as a whole regarding its main features and how it contrasts with
former systems such as edge and cloud computing. We then de-
scribed the individual technological components and how they
fit in the overall architecture. A detailed literature review for the
individual components is also provided to give a full technical
overview of air computing in all aspects.

Moreover, we examined the advantages that would be put
forward by a possible air computing implementation regard-
ing the QoS requirements of the next-generation applications
and QoE expectations of end-users. Then, we elaborated on
the potential use cases where the current paradigms experience
difficulty in meeting the dynamic user demands. Finally, we
analyzed the opportunities and the corresponding challenges in
an overall context from the perspectives of both the end users
and service providers. Inspired by the challenges involved, we
presented a selection of future research directions which we be-
lieve have the strong potential to transform the domain.
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