
Fault Tolerance in SDN Data Plane Considering Network and Application Based Metrics

Baris Yamansavascilara,∗, Ahmet Cihat Baktira, Atay Ozgovdeb, Cem Ersoya

aDepartment of Computer Engineering, Bogazici University, Istanbul, Turkey
bDepartment of Computer Engineering, Galatasaray University, Istanbul, Turkey

Abstract

Failures in networks result in service disruptions which may cause deteriorated Quality of Service (QoS) for the end-users. Since
SDN is becoming the mainstream paradigm for networks, implementation of a robust fault tolerance scheme for SDN-based net-
works is crucial. Existing SDN data plane fault tolerance approaches can be classified as reactive and proactive which may or may
not rely on the controller, respectively. However, none of them qualifies as a complete solution, providing only partial remedies. In
this work, we propose Dynamic Protection with Quality of Alternative Paths (DPQoAP) that considers not only the existing faults
within the network but also the quality of alternative paths. As a result, we can sustain the QoS throughout the network after the
recovery. We also investigate how application based parameters are affected by link failures. To this end, we explore the change in
Quality of Experience (QoE) caused by link failures under different cases using Dynamic Adaptive Streaming over HTTP (DASH)
for video streaming. On the other hand, even though DASH is proposed as a solution to improve the QoE affected by the dynamic
conditions of the networks, it remains insufficient to handle the congested links that show the symptoms of a link failure. Thus,
we apply the data plane fault tolerance approach in SDN to improve the QoE of DASH clients in the case of congestion as well
as the failure. The performance of the proposed solutions is evaluated through various experiments considering the QoS and QoE
parameters. It is observed that DPQoAP enhances the efficiency of the networking operations and adaptability of the applications.

Keywords:
SDN, Fault Tolerance, Reliability, Dynamic Adaptive Streaming over HTTP (DASH), Quality of Experience (QoE), Quality of
Service (QoS)

1. Introduction

Alleviating failures is crucial for service providers in or-
der to meet the Quality of Service (QoS) expected by their
clients (Gozdecki et al., 2003). Strict Service Level Agreement
(SLA) requirements when combined with the risk of reputation
loss are evident that fault handling should be carefully accom-
plished. Ideally, network failures should be handled seamlessly,
transparent to the end-user, not affecting their Quality of Expe-
rience (QoE). Practically, however, remedies try to avoid dis-
ruptions in the network level QoS and application-level QoE as
much as possible.

A fault once occurred in a network evidently impacts its op-
erations. This impact can be broadly categorized as the im-
pact on QoS behavior and the effect on QoE behavior of the
network. Here, the QoS parameters represent the application-
independent network characteristics whereas QoE parameters
represent the specific impact that end-user experiences for a
given application. Both QoS and QoE parameters are of im-
portance for assessing how a given fault triggers fluctuations in
the network performance.

∗Corresponding author.
Email addresses: baris.yamansavascilar@boun.edu.tr (Baris

Yamansavascilar), cihat.baktir@boun.edu.tr (Ahmet Cihat Baktir),
aozgovde@gsu.edu.tr (Atay Ozgovde), ersoy@boun.edu.tr (Cem
Ersoy)

In the context of fault tolerance, Software-Defined Network-
ing (SDN) provides important opportunities with its central
view on the whole network. In SDN, the concept of fault toler-
ance can be taken into consideration within three domains: the
data plane, the control plane, and the application plane. The
data plane issues consist of link or switch failures whereas the
control plane domain considers the failure of the switch con-
troller connections or the failure of the controller itself. The ap-
plication plane domain focuses on the failure of an application
that can affect the northbound API which in turn can gradually
affect other applications. In this study, we focus on the fault
tolerance within the SDN data plane.

Restoration and protection are two essential approaches for
the failure recovery in the data plane. Both of these approaches
have their respective advantages and disadvantages in terms of
the recovery time and recent network view (da Rocha Fonseca
and Mota, 2017; Yu et al., 2018; Saraswat et al., 2019). In the
restoration, the new routing rules for the affected flows are com-
puted considering the recent network view. During this process,
the controller itself is the responsible entity as shown in Figure
1. When a failure occurs in the data plane, it is initially de-
tected by the corresponding switch, and then an event is gen-
erated for the controller to trigger the path calculation process.
Afterwards, the event is processed in the northbound applica-
tion, and the new route is computed. On the other hand, in the
protection, the alternative rules for active flows are predefined

Preprint submitted to Journal of Computer and Network Applications June 14, 2020

for possible failures in the future. Moreover, thanks to the Fast
Failover groups proposed in OpenFlow Version 1.1, the con-
troller involvement is not necessary to update the flow rules in
case of a failure. Thus, the failure recovery time is shorter than
the restoration in this approach.

Protection is usually accepted as a superior approach since it
reduces the recovery time significantly compared to the restora-
tion. However, this view does not correctly reflect all the re-
quirements of a fault protection mechanism since it omits the
quality of the new path substituting the faulty one. Typically,
in a network, various alternative paths exist to recover a given
fault and the quality of these paths should be incorporated into
the selection process. With this vision in mind, we propose Dy-
namic Protection with Quality of Alternative Path (DPQoAP)
which combines both the restoration and the protection meth-
ods to achieve fast recovery while selecting among available
high-quality paths. To achieve this goal, DPQoAP takes two
important requirements into account: (1) the recent state of the
network considering restoration, and (2) backup path informa-
tion for the active flows regarding protection. To carry out the
first requirement, DPQoAP periodically checks the quality of
alternative paths in the network. For the second requirement,
it uses Fast Failover groups to hold backup path information in
corresponding switches.

To evaluate the performance of DPQoAP, we focused on the
video streaming use case. Currently, video streaming is the
most influential traffic type of the Internet since it occupies 82%
of the overall data traffic volume (Cisco Visual Networking,
2020). Apart from its major role in the traffic composition,
video streaming also forms a separate category with respect
to other applications since it is continuously evaluated by the
end-user. Dynamic Adaptive Streaming over HTTP (DASH)
is the widely accepted technology recently for video streaming.
DASH, can receive video segments in independent connections,
which in turn allows for versatile and dynamic streaming oper-
ation.

Assuming a continuum of network performance degradation,
link failure can be considered as an extreme case of congestion
in which the delay becomes infinity. Bearing this view in mind,
fault tolerance solutions originally developed for link failures
can, in fact, serve as candidate methods to deal with conges-
tion when carefully adjusted to this new context. Accordingly,
even though the adaptive nature of DASH provides important
flexibility considering the unstable network conditions, its ca-
pabilities are insufficient to handle the extreme congestion case
as well as the link failure. Thus, we combine the capabilities of
DASH and our novel approach that perceives the congestion as
the fundamental element for the link failure. Our experimental
results show that QoE parameters including video quality, bi-
trate latency, and the number of quality switches are improved
dramatically when we apply our method to the congestion case.

Another focus of our work is related to the inadequacy of an
experimentation method that is typically being used in the lit-
erature. Mininet, which owes its reputation to the wide variety
of its capabilities, is the emulation environment for evaluating
SDN-based proposals (De Oliveira et al., 2014). However, in
the context of generating link failures, we argue that capabili-

Figure 1: Restoration in SDN.

ties provided by Mininet are insufficient to emulate a fault sce-
nario in a realistic manner since it actually destroys the whole
connection including the ports of switches. Moreover, Mininet
allows switches to notify port failures to the northbound appli-
cations with almost zero delay which can cause incorrect recov-
ery times to be reported. As a remedy, in our work, we incorpo-
rate L2 Linux bridges (Varis, 2012) that are transparent to both
the controller and the switches to design the failure experiment
scenarios. We demonstrate that our approach more realistically
emulates network failures even in Mininet.

In this study, we focus on the change of network and appli-
cation based metrics regarding QoS and QoE, respectively, in
case of a failure in the data plane. Moreover, we investigate the
effect of congestion on QoE. Thus, main contributions of our
study can be summarized as:

• We propose DPQoAP which is a novel dynamic protection
method considering the quality of alternative paths. In this
case, in addition to the recovery time, we also consider the
alternative paths for flows affected by the failures.

• We investigate how video quality and thus QoE would
fluctuate when a failure occurs. Since related studies in the
literature consider only the variations of network parame-
ters regarding QoS, this study carries out a unique touch to
this problem considering the change of application param-
eters.

• Studies using an emulation environment such as Mininet
for SDN do not consider the broken link scenario that may
emulate the real-world case and therefore trigger the fail-
ure by using a special Mininet command. In this study,
to emulate this realistically, we deploy a Linux bridge that
operates in L2, and is completely transparent to the con-
troller and switches in the network for particular scenarios
in order to make a valid comparison and evaluation.

• We detect the congestion in the link layer operating Bidi-
rectional Forwarding Detection (BFD) protocol rather than
the application layer metrics that is generally used by
video applications to adapt themselves for new conditions.

2

Detecting congestion at the network level through SDN al-
lows us to implement a global solution as opposed to each
client adapting themselves in a reactive manner.

• After its successful detection, we employ the data plane
fault tolerance mechanism to solve the congestion problem
for DASH in SDN environments. As a result, we apply the
same treatment carrying out for the link failure, to a differ-
ent problem, congestion, that shows similar symptoms.

• We explore the impact of BFD intervals on the QoE pa-
rameters along with the video segment size to come up
with a feasible operational range where the fault tolerance
approach is beneficial for the congestion case.

The rest of this study is organized as follows. In Section
2, we elaborate the related works including DASH, fault tol-
erance, and congestion studies that use SDN as their network-
ing paradigm. Section 3 provides the background information
about OpenFlow groups, BFD, and dynamic adaptive video
streaming with QoE. Section 4 provides details of our fault tol-
erant design. Afterwards, in Section 5 and 6, we present the
performance evaluation of our system along with the experi-
ments. Finally, we conclude this study in Section 7. We give
the primary notations used throughout the paper in Table 1.

2. Related Works

SDN, with its dramatically different paradigm, offer many
benefits to address networking challenges that are hard to cir-
cumvent with traditional approaches. The existence of a cen-
tralized controller in addition to the radically different flow of
events provided by SDN render these solutions technically fea-
sible. One such challenge is the fault tolerance including data
plane, control plane, and application plane domains. Fault tol-
erance in each domain leads to different problem formulations.
This study focuses on the data plane domain as it is the level
where the actual traffic is handled.

2.1. Restoration Approaches
Considering fault tolerance in SDN, one of the most impor-

tant concepts in OpenFlow protocol is the Fast Failover (FF)
groups that allow for solving faults in the data plane without
involving the controller. However, before OpenFlow protocol
Version 1.1 in which OpenFlow Groups including Fast Failover
groups are introduced, many studies (Sharma et al., 2011; Kim
et al., 2012; Nguyen et al., 2013; Li et al., 2014) that work on
this topic used the restoration approach. The common behav-
ior in these studies is that they used the controller for failure
notification and then calculate new routes to maintain commu-
nication. Kim et al. (Kim et al., 2012) used VLANs to com-
pute routing paths. In (Sharma et al., 2011), Sharma et al.
compared their fast failover system with the Learning Switch,
Learning PySwitch, and Routing Mode of the NOX controller
(Gude et al., 2008). Nguyen et al. (Nguyen et al., 2013) used
SDN for fault tolerance in Wide Area Networks (WANs) since
routing protocols such as BGP and OSPF undergo serious prob-
lems in failures. For example, while BGP has prolonged route

Table 1: List of abbreviations

Notation Description
ACK Acknowledgment
API Application Programming Interface
BFD Bidirectional Forwarding Detection
BFS Breadth First Search
BGP Border Gateway Protocol
DASH Dynamic Adaptive Streaming over HTTP
DFS Depth First Search
DPQoAP Dynamic Protection with Quality of Alter-

native Paths
FF Fast Failover
HTTP Hypertext Transfer Protocol
L2 Link Layer 2
LFM Link Failure Messages
LLDP Link Layer Discovery Protocol
LoS Loss of Signal
MEC Mobile Edge Computing
MOS Mean Opinion Score
MPD Media Presentation Description
OSPF Open Shortest Path First
QoAP Quality of Alternative Path
QoE Quality of Experience
QoS Quality of Service
RTSP Real-Time Streaming Protocol
SDN Software-Defined Networking
SLA Service Level Agreement
SSIM Structural Similarity Index
TCAM Ternary Content Addressable Memory
TCP Transmission Control Protocol
VLAN Virtual Local Area Network
VoIP Voice over IP
WAN Wide Area Network

convergence time, OSPF has long recovery time. Li et al. (Li
et al., 2014) on the other hand developed a restoration approach
by using a local optimal failover method in order to reduce the
path calculation time. In (Zhang et al., 2011), Zhang et al. in-
vestigated network resilience of OpenFlow based centralized
networks by considering connectivity failures and controller
placement problem. They first formulated the controller place-
ment metrics and failures including link, switch and switch-
to-controller. Afterwards they performed resilience analysis of
the centralized network architecture. Their experimental results
showed that the location of the controller affects resilience of
the network significantly. Lee et al. (Lee et al., 2019) focused
on real-time flows considering their own fault tolerance con-
straints using adaptive path restoration. They implemented a
multi-constrained path finding algorithm which can reroute the
flows based on their time budget. In (Tajiki et al., 2019), au-
thors considered failure recovery with service function chain-
ing. Based on the service requirements of each service, they
used restoration as a fault-aware routing.

Some studies also considered reliability in this manner. In
(Yuan et al., 2018) Yuan et al. designed a system based on the

3

Byzantine model to tolerate faulty switches in order to enhance
reliability. Moreover, Song et al. (Song et al., 2017) focused
on control-path reliability which is an important consideration
for out-of-band controllers whose network view can be affected
by the data plane failures. Besides, Bhatia et al. (Bhatia et al.,
2019) considered reliability in an SDN-enabled VANET envi-
ronment. They used a network coding based approach for reli-
able data dissemination.

2.2. Protection Approaches

Since using the controller for fault tolerance increases the
recovery time, many studies proposed methods to solve this
problem in the data plane without involving the controller. In
(Desai and Nandagopal, 2010), authors built a system that per-
mits switches to send faulty link information to only the rele-
vant switches in order to prevent traffic flooding and increase
the network performance in centralized networks. Thus, when
a link fails in the network, the corresponding switches create
Link Failure Messages (LFM) and send them to the relevant
switches. Their experiments showed that switches are informed
of the failed link sooner than the controller identifies and com-
mits an update. Likewise, Kempf et al. (Kempf et al., 2012)
supported a monitoring function for failure detection in the data
plane without involving the controller. To this end, they gener-
ated monitoring messages within the source switch and process
them in another destination switch. If the destination cannot re-
ceive these packets for a long enough period, their method con-
cludes that there is a fault in the current path. Their experiments
showed that the data plane fault recovery can be achieved in a
scalable way within 50 ms using this function. In (Ramos et al.,
2013b), Ramos et al. extended their previous study (Ramos
et al., 2013a) and developed a proactive failure recovery scheme
by carrying the information of alternative paths in the packet
headers. Thus, when a link failure happens, their system uses
alternative path information in order to maintain communica-
tion without consulting the controller. In the packet header, they
used VLAN and MAC Ethernet fields to carry alternative paths.

Beheshti et al. (Beheshti and Zhang, 2012) investigated
the fault tolerance between switch and controller connection
by considering controller placement and control-traffic metrics.
They evaluated the impact of the routing and placement algo-
rithms on several topologies. They formulated the resiliency
problem and propose a protection method for the connectiv-
ity between the controller and the switches. In (Zhu and Lan,
2015), authors proposed a protection mechanism for node fail-
ures in SDN by applying a backup flow-table architecture using
ant colony algorithm. For each main path, they deposited an
alternative (backup) path in case there is a failure. Gyllstrom
et al. (Gyllstrom et al., 2014) addressed reliable multicasting
of critical Smart Grid data. To this end, they designed a link
failure detection algorithm namely PCOUNT, and formulated
an optimization problem for computing multicast trees. More-
over, they tested proactive and reactive schemes. On the other
hand, controller placement and switch migration in a multi-
controller SDN environment are important to provide fault tol-
erance considering protection. To this end, (Al-Tam and Cor-

reia, 2019) and (Correia and Faroq, 2019) can be evaluated as
link-protection preplanning.

On the other hand, Reitblatt et al. (Reitblatt et al., 2013)
proposed a new language based on Regular Expressions for im-
plementing fault-tolerant network programs in SDN by using
OpenFlow Fast Failover groups. They allowed developers to
specify the set of paths that packets may take through the net-
work as well as the degree of fault tolerance required. Thus,
their compiler generated rule-tables and group-tables that pro-
vide specified fault tolerance. Accordingly, Petroulakis et al.
(Petroulakis et al., 2017) proposed a pattern framework for fault
tolerance using a rule-based language. Moreover, Cascone et
al. (Cascone et al., 2017) used finite state machines in the data
plane for fast failure detection and then recovery.

After OpenFlow protocol Version 1.1 was introduced, stud-
ies used Fast Failover groups as it provides many benefits in
fault tolerance including recovery time and control-path traf-
fic. To this end, Sharma et al. (Sharma et al., 2013b) con-
sidered carrier-grade networks in which fault recovery should
be completed in 50 ms, and therefore they performed protec-
tion mechanisms using OpenFlow Fast Failover groups. The
experimental results showed that the protection approach di-
minishes the time required for fault recovery and mitigates the
traffic load on the controller. Moreover, in (Sharma et al.,
2013a), they focused on failure recovery for the in-band Open-
Flow networks in which control and data traffic are transmit-
ted on the same channel by applying the same scenarios. In
(Borokhovich et al., 2014), Borokhovich et al. implemented
traditional graph algorithms including BFS, DFS, and Mod-
ule to compute backup paths which are used in FF groups.
Adrichem et al. (Van Adrichem et al., 2014) used Bidirectional
Forwarding Detection (BFD) protocol (Katz and Ward, 2010)
per link as well as (Sharma et al., 2013b) to detect failures and
then compared the performance of different BFD detection in-
tervals in terms of milliseconds. Pfeiffenberger et al. (Pfeiff-
enberger et al., 2015) on the other hand, focused on the robust
multicasting in SDN by considering fault tolerance. In (Tho-
rat et al., 2017), the authors used VLAN tags in their design in
order to reduce alternative path rules.

The features of the highlighted studies that focuses on the
data plane fault tolerance problem are given in Table 2.

2.3. DASH and QoE in SDN
Studies working on DASH use SDN as the main network-

ing technology in order to exploit the benefits of the cen-
tralized controller and, thus, enhance QoE. Zabrovskiy et al.
(Zabrovskiy et al., 2016) applied DASH in Mininet and com-
pare its performance with a specialized hardware-software em-
ulator using the same channel characteristics. The performance
results obtained from both settings were comparable, which en-
abled authors to conclude that Mininet can be used as a reliable
emulator for DASH. Mkwawa et al. (Mkwawa et al., 2016)
proposed a video quality management scheme that considers
the traffic intensity. They compared the number of stalls of the
DASH video streaming when their proposed scheme is used and
not used. As expected, the number of stalls were fewer when
they used their solution. In (Bentaleb et al., 2016), Bentaleb et

4

Table 2: The features of highlighted studies that focused fault tolerance in SDN

Study Goal Method Main Contribution Testing Controller
(Desai and
Nandagopal,
2010)

Finding solution for
link failures in data
plane without involv-
ing the controller

Informing
relevant
switches

Devising a way such that
only the necessary switches
are informed of the link fail-
ure

Custom Emu-
lation

Custom

(Sharma
et al., 2011)

Fast Recovery Restoration Comparing different restora-
tion options in OpenFlow
networks

Custom Emu-
lation

POX

(Kim et al.,
2012)

Scalable Fast Recov-
ery

VLAN usage
with restora-
tion

A fault-tolerant SDN archi-
tecture scaling to large net-
work sizes

Mininet NOX

(Kempf et al.,
2012)

Failure detection
without involving the
controller

Extending
OpenFlow 1.1
protocol

Extending OpenFlow proto-
col to support monitoring
function in data plane by us-
ing switches

Custom NOX

(Ramos et al.,
2013b)

Proactive Failure Re-
covery

Alternative
routes carried
in packet
headers

Alternative routes carried
in packet headers by using
their OpenFlow prototype

Mininet NOX

(Reitblatt
et al., 2013)

Fault-tolerant SDN
using regular expres-
sions

Regular ex-
pressions and
OpenFlow FF
Groups

A new language for writing
fault tolerant programs

Mininet Custom

(Sharma
et al., 2013a)

Failure recovery for
in-band OpenFlow
network

Restoration
and Protec-
tion

Evaluation of failure recov-
ery considering both control
and data traffic for in-band
network

Mininet NOX

(Li et al.,
2014)

Recovery of link fail-
ures

Restoration
with local
optimal
failover

Scalable failover method in
data center networks

Mininet Floodlight

(Petroulakis
et al., 2017)

Rule-based language
in order to provide
fault tolerance in
SDN networks

SDN Pattern
Framework

Fault tolerance patterns that
can provide restoration and
protection failures

Mininet ODL

(Cascone
et al., 2017)

Fast recovery Protection us-
ing finite state
machines in
switches

Using stateful approach (fi-
nite state machines) in data
plane for fast detection and
recovery

Mininet Ryu

(Thorat et al.,
2017)

Fast recovery with
aggregated flows

OpenFlow FF
groups with
VLAN

Efficient memory usage with
minimum controller interva-
tion

Mininet NOX

(Yuan et al.,
2018)

Automatically toler-
ate faulty switches

Byzantine
fault toler-
ance model

A system that guarantees the
correctness of flow statis-
tics information even when
faulty switches exist

Mininet RYU

(Lee et al.,
2019)

Fault-resilient real-
time networking
system

Adaptive path
restoration

A system that supports real-
time flows with their own
fault tolerance constraints

Physical Net-
work Testbed

Odroid-XU4

(Tajiki et al.,
2019)

Failure recovery
with service function
chaining

Restoration
regarding
service re-
quirements

Fault-aware routing archi-
tecture for service function
chaining problems with en-
ergy consideration.

Custom Emu-
lation

Custom

5

al. focused on QoE unfairness for multiple clients in the net-
work since when the number of clients increases, QoE is unfair
because of bandwidth sharing and network resource underuti-
lization. Afterwards, they improved their scheme in (Bentaleb
et al., 2017), considering scalability issues of clients, commu-
nication overhead, and client heterogeneity. Likewise, Bagci
et al. (Bagci et al., 2017) studied QoE fairness among clients.
They used the network slicing concept and manipulated TCP
windows to prevent QoE fluctuations.

2.4. Congestion in SDN

SDN is also used for the congestion case by several stud-
ies. In (Lu and Zhu, 2015), the authors modified the TCP re-
ceive window of ACK packets at the controller in order to avoid
network congestion. To perform this, they deployed a queue
management scheme in OpenFlow-switch that notifies the con-
troller when the queue passes the given threshold. Kim et al.
(Kim et al., 2016) on the other hand considered the dynamic
changes in the network traffic and proposed their reinforcement
learning based technique, Q-learning, for the routing of flows to
prevent congestion. Cheng et al. (Cheng et al., 2017) indicated
the shortage of ternary content addressable memory (TCAM)
of OpenFlow switches that cause a bottleneck for scalable flow
management. Therefore, they applied flow aggregation using
VLANs to prevent congestion for a failure recovery case. In
(Nasimi et al., 2018), the authors carried out a congestion con-
trol mechanism in Mobile Edge Computing (MEC) environ-
ment using SDN considering congestion. They classified the
network traffic as delay tolerant and delay sensitive so that they
buffered the delay tolerant flows in MEC servers during the
peak hours in order to prevent congestion. In (Bhatia et al.,
2020), the authors performed a traffic congestion analysis con-
sidering SDN-based real-time urban traffic analysis in VANET
environment. Since their primary goal is to enhance traffic flow
prediction in a VANET environment, they also focused to find
congestive sensitive spots. To perform traffic congestion pre-
diction, they used a LSTM model.

2.5. Differences Between Existing Works and Ours

To the best of our knowledge, there is no study in the litera-
ture that examines QoE for fault tolerance in SDN considering
video streaming using the DASH paradigm. Moreover, studies
worked on fault tolerance such as those listed in Table 2 consid-
ered only QoS parameters including recovery time, delay, and
the number of affected flows rather than the application param-
eters that affect QoE. On the other hand, this is the first study
that applies a fault tolerance approach to improve QoE in case
a network-based problem like congestion. Furthermore, we in-
vestigate the Linux bridge effect on fault management consid-
ering BFD-based solutions for both QoS and QoE. Thus, our
study is distinctly separated from the existing works.

3. Background

Since the background information is essential to comprehend
our proposed fault tolerant scheme, we provide the fundamen-

tal explanations about the OpenFlow group concept, BFD, and
DASH in this section, respectively.

3.1. OpenFlow Groups

In the first stable version of OpenFlow, namely 1.0, there
was no specific functionality for fault tolerance. Therefore, net-
work managers and researchers used their own techniques to
overcome the failures in SDN until OpenFlow version 1.1 in
which the group table concept was introduced. The goal of the
OpenFlow groups is to apply specific operations that cannot be
defined by the flow itself such as backup path information on
packets. A group consists of entries that have a group identifier,
a group type, counters, and a list of action buckets as shown
in Figure 2a. One of the most important features brought by
OpenFlow groups is the ability to define multiple lists of ac-
tions, which is called an action bucket, for each group entry.
This feature makes possible to perform various traffic engineer-
ing operations in SDN. When a packet matches with a flow rule,
it is assigned to the appropriate group entry. There are currently
four OpenFlow group types:

• All Group: This group is used for multicasting or broad-
casting. A packet in this group is copied for each bucket
in the bucket list and handled independently.

• Select Group: It is developed for load balancing. The
packet in the group entry is sent to a single bucket. De-
termining the corresponding bucket is performed by the
switch itself with a selection algorithm such as round
robin.

• Indirect Group: There is only one bucket in this group
type. The goal is to cover commonly used actions for the
same next hop when forwarding and thus reduce the switch
memory utilization.

• Fast Failover Group: Likewise, in the select group, the
packet is sent to only a single bucket. The difference is
that there is no bucket selection in this group. The packet
is sent to the first live bucket. The liveness of bucket is
checked by watch port/group parameters. The schema of
this group is depicted in Figure 2b.

Fast Failover groups are used for the protection approach in
SDN. They provide alleviated control path traffic since the con-
troller is not involved in the failure, and reduced recovery time
as the problem is solved in the data plane. The working process
of Fast Failover group concept is depicted in Figure 3. The in-
coming packet is first evaluated by the flow-rule table and then
the corresponding action, which is Fast Failover group in this
case, is applied. Afterwards, based on the liveliness status of
the possible output ports that are monitored continuously, the
packet is sent to the first available egress port. Thus, if a link
fails, the appropriate action is instantly applied by the switch
without consulting the controller.

6

(a) Standard OpenFlow group. (b) OpenFlow fast failover group.

Figure 2: OpenFlow Groups.

Figure 3: The working mechanism of a Fast Failover group in OpenFlow
switch.

3.2. Bidirectional Forwarding Detection (BFD)

Among the failure detection methods, the BFD protocol is
special since it is designed specifically for failure detection
and its detection speed outperforms the others (Sharma et al.,
2013b; van Adrichem et al., 2014). BFD protocol can be run
in computer networks with any transport protocol for fault tol-
erance since it is protocol-independent. BFD is used for paths
between two nodes in order to observe failures and disruptions
in communication quickly. These two nodes can be connected
either directly or through multiple hops. Each node transmits
a control packet including the current state of the monitored
link or path to its pair node. When a node receives the control
message, it sends an echo message with the session status. Ac-
cordingly, failure detection time, Td, is computed based on the
message transmit interval, Ti, and the detection time multiplier,
M, as given in Equation 1. The detection time multiplier is used
to prevent false positives that can occur due to packet loss.

Td = (M + 1) ∗ Ti (1)

3.3. Video Streaming and Quality of Experience

Video streaming has dramatically changed for the last few
years due to the recent developments of the Internet technolo-
gies and protocols. Considering the increasing usage of mo-

Figure 4: Concept of DASH (Adapted from (Seufert et al., 2015)).

bile devices and the high-resolution options, this change is in-
evitable. In traditional video streaming, protocols like Real-
Time Streaming Protocol (RTSP) behave in a stateful manner
via tracking the state of the clients during the streaming. More-
over, when a streaming process has been started between a
client and a server, the connection is maintained as the stream of
packets until the video file is completely transferred. However,
this approach is not sufficient today considering the dynamic
needs of video streaming.

On the other hand, the Hyper-Text Transfer Protocol (HTTP)
is stateless; when the client receives its requested data, the con-
nection is terminated. Thus, the streaming is performed in a
more dynamic manner when HTTP is used since each HTTP
request results in a new transaction that provides many advan-
tages for video streaming (Stockhammer, 2011). As a result,
Dynamic Adaptive Streaming over HTTP (DASH) is proposed
by addressing the weaknesses of the traditional streaming meth-
ods.

DASH operates upon fixed durations of video segments
called "representations" which may belong to different bitrates.
DASH introduces further adaptivity to the dynamic nature of
HTTP streaming by enabling a switching mechanism among
different representations. To perform this concept, first, the
video file is sliced into the fixed timed parts, namely segments
or chunks, at the server as described in a Media Presentation
Description (MPD) file. These video parts generally vary from
1 second to 15 seconds of duration. The client can select ap-
propriate segments among different representations based on
its application metrics including the buffer level and through-
put. Thus, a playback can typically consist of different rep-
resentation segments instead of homogeneously defined video
streaming files. This concept of DASH is depicted in Figure 4.

The most important advantage of DASH considering QoE is
the switching mechanism among different representations since
it prevents stalling and thus the client can continue to play the

7

Figure 5: Relation between video quality and bitrate for three different resolu-
tions.

video under several conditions. To measure QoE, there are
subjective and objective measurements. In subjective measure-
ments, users vote their perception of video using the 5-point
scale where 1 represents "poor" and 5 represents "excellent".
This process is named as Mean Opinion Score (MOS). On the
other hand, in objective measurements, several QoE metrics for
DASH (Oyman and Singh, 2012) including HTTP transactions,
representation switch counts, buffer level, and bitrate are eval-
uated and finally, a formula is generated. Actually, since the
video quality is the most distinctive component of QoE, many
studies used the video quality as the objective measurement for
QoE.

One of the most used metrics to measure the quality of the
video is the Structural Similarity Index (SSIM) (Wang et al.,
2004). It is originally used to measure the quality of an image
by comparing it with the original image. Since a video con-
sists of multiple images, the same technique is widely used for
measuring the video quality. Thus, mapping the video quality
and bitrate is coherent because higher bitrate provides higher
similarity with the original video. However, as shown in Figure
5, the mapping of the bitrate to the video quality using SSIM
demonstrated that the relationship between bitrate and percep-
tual quality is not linear (Georgopoulos et al., 2013). Hence,
using three resolution types and various bitrates given in Table
3, a generalized function for QoE based on bitrate and reso-
lution is configured by conducting curve fitting (Georgopoulos
et al., 2013). The formula is given in Equation 2 and corre-
sponding coefficients are given in Table 4. In the equation, f(x)
represents the video quality, and variable x denotes the bitrate.

f (x) = axb + c (2)

4. Design of the Fault Tolerant Data Plane

In our fault tolerant data plane design, we implement our
novel method, DPQoAP, along with other fault tolerance ap-
proaches including static protection, and restoration by consid-

Table 3: Bitrates for different screen resolutions

Resolution Bitrate (kbps)
1080p 100, 200, 600, 1000, 2000, 4000, 6000, 8000
720p 100, 200, 400, 600, 800, 1000, 1500, 2000
360p 100, 200, 400, 600, 800, 1000

Table 4: Coefficients of the generalized video quality function

Resolution Power Series Model Goodness of Fit
a b c Adjusted R2 RMSE

1080p -3.035 -0.5061 1.022 0.9959 0.006011
720p -4.85 -0.647 1.011 0.9983 0.002923
360p -17.53 -1.048 0.9912 0.9982 0.002097

ering their use cases and to observe the performance of our pro-
posal. Moreover, we apply DASH and BFD-based Congestion
Detection modules that also exploit the benefits of our fault tol-
erance package considering end user applications in SDN. The
graphical abstract shown in Figure 6 summarizes our design.

4.1. DPQoAP Module

The static protection has many benefits over the restoration
as the failure is handled in the data plane. However, the per-
formed action using the Fast Failover groups is actually based
on the network information that is taken at the beginning of the
communication. Therefore, since the network environment can
change over time because of various reasons, the applied ac-
tions may not be efficient for the communication even though
it provides the continuity of it. Thus, in DPQoAP, we combine
the advantages of the restoration module in which the actions
are applied using the recent condition of the network, and the
static protection module which provides responsiveness for the
failures without involving the controller.

The main task of this module is to find the best alternative
path based on the latency parameter. Since Floodlight controller
(Floodlight Controller, 2019) provides an API call to obtain the
latency values of the links, this information is used for each path
to determine the best alternative path for every QoAP calcula-
tion interval, Tqoap. A demonstrative example is shown in Fig-
ure 7. After the formation of the primary path and two backup
paths as depicted in Figure 7a, the secondary path, Path 2, be-
comes loaded with a recently generated heavy traffic as shown
in Figure 7b. This situation is detected by our DPQoAP mod-
ule and subsequently, Path 3 is replaced as the secondary path
since its latency value is currently smaller than Path 2. Finally,
as shown in Figure 7c, when the link of the primary path fails,
the quality of the alternative path has already been considered
and therefore communication continues with acceptable qual-
ity.

We implemented this module as given in Algorithm 1. First,
the current network state is analyzed in order to get the recent
information of the links, switches, and their load conditions.
Afterwards, for each groupID, which indicates a <source, des-
tination> tuple, all computed paths are examined and then the
primary path is extracted by checking whether the path is cur-
rently active or not. Afterwards, each primary path and its cor-

8

SDN	Controller

Congestion ModuleFault Tolerance PackageDASH Module

DPQoAP
Module

Static Protection
Module

Restoration
Module

Figure 6: Abstract of our fault tolerant design in SDN.

responding groupID is given as the parameters to the function
OrganizeBucketList in which the best alternative path is cal-
culated from each <switch, port> tuple that is in the primary
path and then bucket lists are reorganized. This operation is re-
peated based on the QoAP calculation interval, Tqoap, that must
be configured for the network conditions.

4.2. DASH Module
To calculate the necessary metrics including the buffer level

and the bitrate for the video quality value, we implemented
a video client module using DASH.js (dash.js, 2019). It is
a widely used Javascript library to measure the DASH client
metrics. Thus, this module consists of several functions for ob-
serving the changes in the metrics in the case of a failure and
congestion.

Apart from the failure, for the congestion scenario that in-
cludes multiple clients, each DASH client reports their QoE pa-
rameters including the bitrate, video quality value, latency, and
the number of quality switches for the evaluation of the effect of
congestion. All these parameters except the video quality value
are extracted from the DASH.js API.

4.3. BFD-based Congestion Detection Module
We designed this module based on the data plane fault toler-

ance mechanism applying the restoration approach rather than
protection. Since video streaming can resist network changes
for seconds through its buffering mechanism, rerouting flows
based on the recent network view would be beneficial. Similar
to the fault tolerance problem, our BFD-based Congestion De-
tection Module includes a detection phase and the action phase.
However, since there is no need to reroute all affected flows in
the congestion problem, it is separated from the fault tolerance.
Figure 8 shows the main aspects of our design.

ALGORITHM 1: DPQoAP Module
Input: Paths of groups, bucket list for groupIDs
Output: The Best backup path based on latency
Function EvaluationOfPaths ()

ComputeCurrentNetworkState();
for groupID ∈ groupIDs do

groupPaths = pathsO fGroups(groupID);
if groupPaths , null then

for path ∈ groupPaths do
if IsPathActive(path) = true then

primaryPath = path;
break;

end
end
OrganizeBucketList(groupID, primaryPath);

end
end

end

4.3.1. Congestion Detection
The first step is the detection of the congestion using the BFD

in the case of a heavy traffic load as shown in Figure 8. BFD
is run on the switches to which the observed link is connected.
These two switches are called as a pair regarding to BFD. Each
switch conveys a control packet including the current state of
the monitored link to its pair switch. When a switch receives
the control message from its pair, it sends an echo message to it
with the session status.

The failure detection time, Td, is based on the BFD message
transmit interval, Ti, that can be manually configured by the
network administrator considering the given services. For ex-
ample, if real-time applications such as VoIP are widely used
in the network, the interval must be very low considering the
50 ms recovery time (Sharma et al., 2013b). On the other hand,
if there is multimedia traffic like video streaming, the interval
may be in seconds due to the buffer mechanism of the applica-
tions. Thus, Td is computed based on the Ti and the detection
time multiplier M as given in Equation 1. M value is used to
prevent false positives.

4.3.2. Rerouting Flows
After detecting the congestion using BFD, the problem on

the link is reported to the controller via the OpenFlow protocol.
Subsequently, the controller informs the modified fault toler-
ance application about the problem. In the application, flows
passing through that link are first extracted from the flow pool
in which all active flows are held. Afterwards, the predefined
percentage of flows, which is 50% in this study, are selected for
rerouting and the new rules are created for them. As a result,
the congested link is relieved.

4.4. Restoration Module

In the restoration, the essential idea is the involvement of
the controller. Because of the dynamic nature of the network

9

(a) Primary and backup paths between User
A and User B.

(b) Heavy traffic on the original Path 2 and
changing the order of the backup paths.

(c) Evading the failure in the network con-
sidering the QoAPs.

Figure 7: The concept of the dynamic protection module.

Figure 8: The design of the BFD-based Congestion Detection System.

environment, the restoration approach is important to handle
the failures in the network. We implemented the restoration
module as demonstrated in Algorithm 2 by applying the steps
shown in Figure 1. First, the failed link information is received
by the controller as an event/input. Based on this information,
the current network state is computed in order to calculate the
new route based on the smallest hop count for the flows affected
by the failure. Afterwards, the affected paths are identified via
the active flow pool using the failed <switch, port> tuple and
then a new path is calculated for each flow. Finally, old rules
are replaced with the new ones determined by the restoration
module.

ALGORITHM 2: The Algorithm of Restoration Module
Input: Failed link information including its src/dst switch

and port numbers
Output: The new route
linkIn f o = ExtractLinkInfo(f ailedLink);
ComputeCurrentNetworkState();
for path ∈ activePaths do

if f ailedLink ∈ path then
newPath = ComputeNewPath(f ailedLink.src,
path.dstS witch);
removePathFromSwitches(path);
InstallRules(newPath);

end
end

(a) Primary and backup paths between communicators.

(b) Static protection using OpenFlow groups.

Figure 9: Static Protection in SDN.

4.5. Static Protection Module

We used OpenFlow Fast Failover groups for this module to
apply backup paths in case a failure occurs in the primary path.
Thus, the failure is recovered without the involvement of the
controller and the burden on the control plane and control chan-
nels is mitigated as depicted in Figure 9. First, all possible
routes between the new source-destination pair are calculated
and one of them is selected as the primary path based on the hop
count. Afterwards, if a failure occurs at one of the resources on
the primary path, Fast Failover groups handle it using the work-
ing buckets in which the backup actions are defined. As shown
in Figure 9b, the primary path is actually used to forward pack-
ets until the switch to which the failed link is connected. How-
ever, since the watch/port group belonged to the primary path in
that switch cannot work for the rest of the route because of the
failure, the secondary path would become active by forwarding
the packets of flows to the corresponding switch. Moreover,
since the whole operation after the failure is carried out in the
data plane, the burden on the controller would significantly re-
duce.

10

ALGORITHM 3: Static Protection Module
Input: <source, destination> tuple
Output: Primary and backup paths in the data plane using

Fast Failover groups
Function BuildingProtection()

ComputeCurrentNetworkState();
allPaths = ComputeAllPaths(src, dst);
groupID++;
for path ∈ allPaths do

InstallProactiveRules(path, groupID)
end

end
Function InstallProactiveRules(path, groupID)

index = path.length();
for switch ∈ path do

outPort = path.get(index);
key = getKey(switch + groupID);
buckets = getBucketList(key);
if buckets == null then

buckets = createBucketList();
end
if buckets.contain(outPort) = false then

buckets.add(outPort);
end
switch.update(buckets);

end
end

Since the controller is not involved for the failure in the pro-
tection approach, this module considers only the installation of
the flow rules including the primary and backup paths on the
data plane in a proactive way. Hence, Algorithm 3 shows only
the steps that how the routes are calculated initially and then the
configuration with the installation of the Fast Failover groups.
First, the current network state is computed for effective rout-
ing. Second, for a given source and destination pair, all pos-
sible paths between them are calculated and then assigned to
the allPaths variable. Afterwards, for each path in this set, flow
rules are installed into the appropriate switches in the data plane
by using InstallProactiveRules function. In this function, since
a path consists of <switch, port> tuples in our design, we inves-
tigate each switch in the path considering that whether it has the
bucket that directs flows to the corresponding egress port or not.
If it has buckets for given groupID, which indicates the group
of paths between a <source, destination> tuple, and there is no
egress port information in the bucket, we append it and then
update the switch. On the other hand, if there are no buckets,
we create one with the egress port information for the switch.
Thus, all paths are installed into the data plane as the proactive
procedure.

5. Performance Evaluation of Network-based Metrics

In this section, we evaluate the network-based metrics for
QoS in fault tolerance. We conducted several experiments us-

Figure 10: The topology using a Linux bridge.

ing iPerf (iPerf, 2019) and Wireshark (Wireshark, 2019) tools
on several scenarios. To this end, we first evaluated the per-
formance of our DPQoAP module comparing it with the tradi-
tional protection approach. Afterwards, we focused on the cre-
ation of the link failure deploying Linux bridge in Mininet to
observe its impact on our fault-tolerant modules. Accordingly,
we analyzed the effect of BFD intervals on the packet loss.

We repeated experiments 10 times for the variance control.
We used Mininet for the SDN emulation, and Open vSwitch
(Open vSwitch, 2019) for virtual switches created in Mininet.

In the experiments, based on the scenario, we trigger the fail-
ure in two ways:

1. Using Mininet Command: We used the standard Mininet
command, as link switchA switchB down, to create the link
failure in a given topology. However, in addition to the
link, this command also destroys the ports of switches to
which the link is connected. Since studies that investigate
the fault tolerance problem in the data plane using Mininet
execute this command for the failure, we also applied it in
our experiments.

2. Using Linux Bridge: In the real world, failures on the link
usually happen without affecting the ports of the switches
like a broken cable. This is crucial since affected ports
cause an immediate notification for the switch related to
the failure. Thus, to emulate a real world like failure event
in Mininet, we shut down one of the ports of the Linux
bridge that is placed between the corresponding switches.

Considering the Linux bridge command, we used the topol-
ogy depicted in Figure 10. We also employed the same
topology without deploying Linux bridge for the usage of the
Mininet command.

5.1. Evaluation of the DPQoAP
For a proper assessment of DPQoAP, we first compare our

module with the static protection module. In the test scenario,
we create heavy traffic on the secondary path before the link
failure. Since affected flows are sent to the secondary path with-
out considering the network conditions in the static protection,
this comparison presents the benefits of the dynamic protection.

In our experiments each of which lasts 50 seconds, we used
the topology shown in Figure 10 without deploying Linux

11

Figure 11: A throughput difference between the static and dynamic protection
approaches considering QoAPs.

Figure 12: Comparison of the dynamic and static protection approaches based
on the packet loss for each QoAP interval.

bridge. In the topology, the primary path is S1-S2-S5-S6 while
the secondary path is S1-S2-S3-S5-S6. We first created the traf-
fic that causes 100% load on the link between Switch 2 and 3 at
the 10th second. Afterwards, at the 26th second, we applied the
Mininet command to create the link failure on the link between
Switches 2 and 5.

The result shown in Figure 11 depicts that the throughput of
the transmission significantly reduces when the QoAP is not
considered. Moreover, using our DPQoAP module, the traffic
is not affected by the conditions of the original secondary path
after the link failure since all affected flows have been directed
into a different route.

On the other hand, evaluation of the interval parameter that
is used to calculate the QoAPs for the given topology is crucial
for the performance of the system. Therefore, we compared the
performance of 2-sec, 4-sec, 7-sec, and 10-sec intervals con-
sidering the packet loss. Moreover, we also compared these
results with the performance of the static protection. The re-
sults shown in Figure 12 presents that our dynamic protection
approach outperforms the static protection. Since QoAPs are
not considered in the static protection, packet losses are higher
than the dynamic protection. Besides, the results also show that
if the interval in DPQoAP decreases, the packet loss reduces
since the application uses more recent information of the net-

Sparse
Topology

Medium
Topology

Dense
Topology

0

5

10

15

20

25

30

35

R
ec

ov
er

y
Lo

ss
 (

%
)

Hop-based Restoration
Latency-based Restoration
Static Protection
DPQoAP

Figure 13: Percentage of loss during 2 seconds of window when the failure
occurs.

Sparse
Topology

Medium
Topology

Dense
Topology

0

20

40

60

80

100

120

140

160

Ji
tte

r
(m

s)

Hop-based Restoration
Latency-based Restoration
Static Protection
DPQoAP

Figure 14: Average jitter of the flow during 20 seconds of window after the
failure.

work. However, lower interval causes higher cost for the sys-
tem since the statistics of all living ports in the network must
be collected within the given interval via LLDP packets. Thus,
the interval must be optimized considering the controller traffic
and the applications that run on the network.

To generalize the performance of DPQoAP, we conducted
three experiments considering three different topologies each of
which has different complexities in terms of possible paths after
the failure. The sparse topology is the same as Figure 10 that
has two possible paths after the failure between Switches 2 and
5. Similarly, the medium topology has 14 possible paths after
the failure, and the dense topology has 29 possible paths. We
repeated the experiments 30 times for each scenario to eliminate
the randomization and used the average value of them.

In these experiments, we also included the two versions of
the restoration approach based on the hop-count and the la-
tency. We first investigated the recovery loss that shows what
fraction of the total traffic is affected during 2 seconds of recov-
ery window. Figure 13 shows that restoration approaches have
poor performance for the recovery loss since the controller is
involved in solving the problem. Moreover, since the calcula-
tions in latency-based restoration are more complex, hop-based
restoration provides better results. Considering DPQoAP and
the static protection on the other hand, they produce similar

12

Sparse
Topology

Medium
Topology

Dense
Topology

0

5

10

15

20

Lo
ss

 (
%

)

Hop-based Restoration
Latency-based Restoration
Static Protection
DPQoAP

Figure 15: The percentage of the total loss of the flow during 20 seconds of
window after the failure.

results for different topologies since the alternative paths have
already been calculated before the failure.

Another important measurement for QoS is the jitter since it
directly affects the quality of real-time applications like VoIP.
To this end, we also compared the performance of the differ-
ent approaches based on different topologies. Figure 14 shows
that when the complexity of the topology increases, the jitter
decreases if DPQoAP is used. The main reason of this re-
sult is that since there are more possible paths in dense topol-
ogy, the quality of the selected path in them does not change
in general. However, since the possible options are limited in
sparser topologies, DPQoAP switches the selected path more
frequently so that it causes higher jitter. On the other hand,
static protection provides lower jitter for each topology type
since the paths are calculated once before the failure, and it
does not change the selected path. Besides, the jitter of the
restoration approaches increases based on topology complexity
due they face more complex calculations for the new path.

The result of the last experiment that considers the percent-
age of the total loss of the flow during 20 seconds long window
after the failure is given in Figure 15. This experiment is also
a generalized version of the throughput result given in Figure
11. The results validate that our DPQoAP module is better than
the static protection approach since it considers QoAPs. How-
ever, since the latency based restoration selects the new path
based on the latest condition of the network, it gives the best
result in terms of total loss after the failure. This is an expected
result considering the working mechanism of the approaches.
Since the controller traffic is crucial in SDN, using the restora-
tion approach in a heavy network traffic environment may cause
problems in the data plane. To show this effect, we reported the
control path traffic considering the different number of flows af-
fected by the failure. The results shown in Figure 16 and Figure
17 present the tradeoff between the restoration and protection
approaches regarding the control path traffic. In the restora-
tion approach, when the failure occurs at the 15th second, the
control path traffic increases as shown in Figure 16a, 16b, 16c,
and 16d. Therefore, if there is a critical job in the network, it
would be interrupted for several seconds. Moreover, if the net-
work includes thousands of flows managed by the controller,

the increasing number of affected flows may cause significant
disruptions.

On the other hand, the protection approaches do not affect the
control path traffic when the failure occurs as shown in Figures
17a, 17b, 17c, and 17d since the alternative paths have already
been configured in the switches in the case of a failure on the
link. As a result, a network that includes thousands of flows
may not be affected by a link failure in contrast to the restora-
tion approach. However, since the static protection approach
requires to install alternative flow rules at the beginning of the
communication, it causes bursty traffic on the control path in
this case. Nonetheless, the moment of the bursty traffic on the
control path may be configured based on the load of the net-
work since the start of the communication can be observed and
managed by the controller. Thus, we can conclude that the pro-
tection approaches perform better than the restoration approach
in the case of multiple flows.

5.2. Evaluation of Linux Bridge and BFD Intervals
To evaluate the effect of the Linux bridge command in order

to observe the broken link scenario in Mininet, we first com-
pared the transmission patterns of the link failures carried out
by Mininet command and Linux bridge command, which con-
sists of shutting down a port of Linux bridge, respectively. We
applied the restoration and static protection approaches for the
evaluation. We used the topology shown in Figure 10 for the
Mininet-based failure and Linux bridge-based failure, respec-
tively. In the experiments, we used a single flow to observe the
Linux bridge effect independently. The duration of each exper-
iment was 50 seconds in which the link failure was created at
the 15th second.

Considering the link failure carried out by the Mininet com-
mand, Figure 18a shows the pattern of the transmission for the
restoration approach based on the packet count. This pattern
also shows the recovery time of the restoration approach whose
mean is 40 ms. On the other hand, if we shut down one of the
ports of the Linux bridge to create the link failure, the failure
notification event cannot be created immediately due to ports
are active and therefore the controller cannot be notified. Thus,
in this case, the controller realizes the link failure in the data
plane via LLDP packets. Since LLDP packets are sent by the
controller periodically for the topology discovery update in sec-
onds to prevent the burden on the controller, the failure detec-
tion time is much higher than the other methods. Moreover,
the failure detection time using LLDP updates in the Floodlight
controller is twice of the LLDP update time, which is 12 sec-
onds in our module. Thus, the pattern of the throughput in this
case is as shown in Figure 18b. However, if we use the BFD
protocol between Switches 2 and 5 using Ti as 5 ms, the mean
of the recovery time would become 27 ms that is independent
of the failure creation approaches including Linux bridge and
Mininet commands.

We applied the same approaches above for the evaluation of
the static protection module. Since this module solves the prob-
lem in the data plane using OpenFlow Fast Failover groups,
the recovery time for the link failure created by the Mininet
command is smaller than the restoration module with the mean

13

(a) Control path traffic for
restoration with 10 flows

(b) Control path traffic for
restoration with 20 flows

(c) Control path traffic for
restoration with 40 flows

(d) Control path traffic for
restoration with 80 flows

Figure 16: The number of packets of the control path traffic for the restoration approach using 10, 20, 40, and 80 flows during the lifetime of the experiment.

(a) Control path traffic for static
protection with 10 flows

(b) Control path traffic for static
protection with 20 flows

(c) Control path traffic for static
protection with 40 flows

(d) Control path traffic for static
protection with 80 flows

Figure 17: The number of packets of the control path traffic for the protection approach using 10, 20, 40, and 80 flows during the lifetime of the experiment.

(a) Recovery time is 30-50ms for restora-
tion module using Mininet command.

(b) Recovery time is in seconds for restora-
tion module using Linux bridge for failure.

Figure 18: The demonstrative examples of failure recovery for Mininet com-
mand and Linux bridge based scenarios.

value of 28 ms. However, on the other hand, if we shut down the

Figure 19: Packet Loss based on the BFD message interval.

port of the Linux bridge for the failure, the transmission of the
packets halt. Since the relevant ports of Switch 2 and 5 are not
affected by the failure in this case, OpenFlow FF groups con-
tinue to operate due to it checks the liveliness of the ports even
though there is a fault on the link between them. Thus, pack-
ets are sent to the ports that are assumed as working and then
the traffic stop. However, if we run the BFD protocol on that
link, the transmission continues flawlessly since Open vSwitch
works based on the value of Ti.

Since we have observed through our experiments that BFD
is crucial for a fault tolerant system, we also evaluated the ef-
fect of different Ti values on the recovery. We considered 15

14

ms, 30 ms, 45 ms, 60 ms, and 90 ms failure detection times
regarding Equation 1 and measured the packet loss. The result
shown in Figure 19 presents that when Ti increases, the packet
loss also increases since the duration of the failure detection is
prolonged.

6. Performance Evaluation of Application-based Metrics

Evaluating the change of the application-based metrics is
crucial as well as assessing the network-based parameters since
end-users are affected in this case. To this end, we focused on
the change of QoE parameters in two ways: (1) when the failure
happens and (2) when there is a congestion in the network.

6.1. The Effect of Link Failure on QoE

Our scenarios for this evaluation are similar to the network-
based assessment considering the performance of the restora-
tion, static protection and DPQoAP modules in the case of a
link failure. In the experiments, we used the topology shown
in Figure 10 including one client and one server. The client is
connected to Switch 1 and the server is connected to Switch 6.
We used a short movie namely Big Buck Bunny with 1080p
resolution for the video streaming. The length of the movie is
600 seconds and the link failure was carried out at the 300th
second for each experiment. Moreover, we used 1 second and
10 seconds segment sizes in order to assess the effect of the seg-
ment size. We investigated the change of the video quality value
and buffer level as the application metrics considering QoE. To
measure the video quality value, we used Equation 2 while the
buffer level information was provided by DASH API.

6.1.1. Restoration
When the restoration module is used, the video quality and

buffer level is not affected by the failure created by the Mininet
command for both segment sizes as shown in Figure 20a and
20b. Since video streaming is based on HTTP and the buffer
can hold the fragments of the video for seconds, a failure, which
is recovered within milliseconds, does not affect the quality.

On the other hand, when we use the Linux bridge to create
the link failure, the buffer level and therefore the video quality
is affected for seconds since the recovery time is based on the
LLDP update interval period in this case. As a result, QoE of
the user reduces for seconds as shown in Figure 20c and 20d.
Another important result is that the failure impacts the video
consisting of 10 seconds segment size more than the 1 second
segment size. The main reason is that filling a 10 seconds long
segment after the failure requires longer time than that of the 1
second segment size. Thus, the video cannot be continued to
play properly because of the DASH concept which requires a
full segment for streaming.

6.1.2. Static Protection
Using the static protection module, the buffer level and video

quality are not affected by the failure created by the Mininet
command as well as the restoration module. However, if we
use the Linux bridge to create the failure, the transmission of the

packets halts as in the evaluation of QoS using iPerf. Thus, the
video continues a few seconds after the failure until the buffer in
the client is depleted. On the other hand, when we activate the
BFD protocol on the faulty link, the buffer level and the video
quality is not affected by the failure as shown in Figure 20a and
20b.

6.1.3. DPQoAP
To evaluate the performance of the dynamic protection for

the video application, we applied a similar scenario carried out
in Section 5.1. We created a heavy traffic on the secondary
path at the 100th second before the failure. Afterwards, the
link failure was created on the primary path, between Switch
2 and 5, using the Mininet command at the 300th second. We
did not use the Linux bridge command for the failure in this
case since our main consideration was to evaluate the quality of
the communication after the failure rather than evaluating the
recovery time. The result shown in Figure 21a and 21b points
out that the QoE significantly reduces after the failure if we
use the static protection in this scenario. On the other hand, if
we use our DPQoAP module, QoE is not affected by the failure.
Thus, it is clearly seen that considering the quality of alternative
paths is also crucial for applications in a fault tolerant system
as well as the recovery time.

6.2. The Effect of Congestion on QoE

We investigated three factors in our experiments for the con-
gestion case: the impact of the BFD interval, the traffic load,
and the video segment size on the QoE parameters. For each ex-
periment, we used Mininet for SDN emulation deploying Open
vSwitch for switches since it supports both BFD and OpenFlow
protocols. On the other hand, we used DASH.js for the video
clients. To generate additional traffic and thus cause congestion,
we run the iPerf tool on Mininet.

For each experiment, the topology shown in Figure 22 was
used. We limited the capacity of all links as 50 Mbps by deploy-
ing five DASH clients connecting to Switch 1 and one DASH
server attaching to Switch 6. We ensured that all DASH clients
obtain the video segments via the same route as indicated in
Figure 22 as green arrows. On the other hand, four iPerf clients
were connected to Switch 2 to cause congestion by sending
their packets to the iPerf server which is located at Switch 5.
Moreover, Big Buck Bunny short movie, the duration of which
is 10 minutes, is used for streaming the 1080p resolution video.
After the streaming was started for each DASH client, T1, T2,
T3, and T4 iPerf clients began to send their packets at 50th,
80th, and 110th second respectively to cause congestion. These
iPerf clients generated the same amount of UDP traffic and in-
duced congestion on the link between Switch 2 and Switch 5.

We used 1 second and 10 seconds segments to evaluate the
effect of the segment size. To observe the impact of the traffic
load, we generated 40 Mbps (80% Load), 45 Mbps (90% Load),
and 49 Mbps (98% Load) traffic using only the iPerf clients.
Finally, to evaluate the influence of the BFD intervals in our
system, we used Ti as 100 ms and 1000 ms respectively by
taking M value as two. Thus, the Td values were 300 ms and

15

(a) Video quality value when we
use Mininet command for the
failure.

(b) Buffer level of the video when
we used Mininet command for
the failure.

(c) Video quality value is affected
when we use Linux bridge for the
failure.

(d) Buffer level is affected when
we use Linux bridge for the fail-
ure.

Figure 20: The effect of failure recovery on the video quality and buffer level of video streaming using restoration module with Mininet-based and Linux bridge-based
failure.

(a) Buffer level without consider-
ing QoAP.

(b) Video quality value without
considering QoAP.

Figure 21: QoE is significantly affected if the quality of the alternative paths is
not considered for fault tolerance.

Figure 22: The topology and video traffic route

3000 ms respectively. Moreover, we compared these results
with the non-BFD case.

Consequently, we conducted our experiments for 18 different
cases considering those three parameters. For each case, we re-
peated experiments 6 times. Since each test lasts 10-11 minutes,
the duration of our experiments was 18 hours. To evaluate the
results, we analyzed four QoE parameters including the bitrate,
quality value, latency and number of quality switches from each
client and calculated the average values for each case.

6.3. Effect of Segment Size

Our experiments showed that streaming with the big segment
size is more stable than the small segment size considering the
congestion conditions on the link. Experimental results for 49
Mbps (98% Load) traffic on the congested link given in Figure

23 and Figure 24 represent that fluctuations and change of the
QoE parameters including the average bitrate, video quality, la-
tency, and number of quality switches between representations
are higher in 1 second segment size compared with 10 seconds
segment size. This pattern is the same for 45 Mbps and 40 Mbps
traffic loads. Since a small segment size needs more HTTP re-
quests to transmit video segments, it is affected by the network
conditions more than the big segment sizes.

6.4. The Effect of Traffic Load

To evaluate the impact of the traffic load, we measured the
average video quality of clients based on SSIM and the number
of quality switches including all cases in our experiments. Our
results demonstrated that when the traffic load increases, the
video quality decreases considering both segment sizes with the
non-BFD case as shown in Figure 25a and 25b. For each traffic
load, the video quality with 10-sec segment size is better than
the 1 second segment size for the non-BFD case due to its buffer
capacity. On the other hand, if we use BFD for the congestion
detection, the video quality is improved.

Considering the non-BFD case for the 80% and 90% traffic
loads, the average video quality with 1 second segment size
is not so affected while the average video quality with 10-sec
segment size is decreased. However, for the 98% traffic load,
the video quality is poor when we used 1 second segment size
while it is acceptable for 10-sec segment size.

On the other hand, the effect of the traffic load on the number
of quality switches is shown in Figure 26a and 26b. The results
show that the quality switch count between representations for
the 10-sec segment size is the lowest for 80% load and highest
for the 90% load when the BFD is not used. This is originated
by the fact that 80% load is not heavy for the 10-sec segment
size so that the quality change is low, while the quality is af-
fected by the 90% load that cause quality switches. Moreover,
since 98% load is the most influential for the quality, the quality
cannot fluctuate so that the switch count is not higher than the
case of 90% load. Besides, considering the 1 second segment
size, the count of switches between representations decrease for
higher traffic loads since they cause worse video quality respec-
tively.

16

(a) Average bitrate for 10-sec
segment size

(b) Average video quality for 10-
sec segment size

(c) Average latency for 10-sec
segment size

(d) Average number of quality
switches for 10-sec segment size

Figure 23: The change of QoE parameters for the congested link with 98% load. The QoE parameters are affected by the congestion after 150th second. If our
scheme is used with the BFD mechanism, the QoE parameters are improved for each case.

(a) Average bitrate for 1-sec seg-
ment size

(b) Average video quality for 1-
sec segment size

(c) Average latency for 1-sec seg-
ment size

(d) Average number of quality
switches for 1-sec segment size

Figure 24: The change of QoE parameters for congested link with 98% load. The QoE parameters are affected by the congestion after 150th second. If our scheme
is used with BFD mechanism, the QoE parameters are improved for each case.

(a) The impact of the traffic load
on the average video quality us-
ing 10-sec segment size

(b) The impact of the traffic load
on the average video quality us-
ing 1-sec segment size

Figure 25: The impact of the traffic load on the average video quality with
respect to different segment sizes

6.5. The Effect of BFD Intervals

Our results showed that the impact of BFD is crucial in the
case of congestion. In Figures 23 and 24, the results show that
using BFD fixes the poor outputs of each QoE parameters af-
ter the 150th second at which the traffic load starts to influence
video streaming. Moreover, it is clearly observable that Ti with
100 ms outperformed Ti with 1000 ms regarding QoE param-
eters since its sensitivity is more delicate so that it detects the
congestion earlier. Apart from the 49 Mbps shown in Figures
23 and 24, this pattern is also the same for other traffic loads
including 45 Mbps (90% load) and 40 Mbps (80% load).

On the other hand, the effect of BFD is also noticeable in

(a) The impact of the traffic load
on the average quality switch
count using 10-sec segment size

(b) The impact of the traffic load
on the average quality switch
count using 1-sec segment size

Figure 26: The impact of the traffic load on the quality switch count with respect
to different segment sizes.

Figures 25a and 25b considering the video quality based on the
traffic load. For 10-sec segment size with 80% traffic load, the
effect of BFD interval is limited since the traffic could not cause
congestion that induces to prevent BFD control packets consid-
ering their message interval, Ti. However, for 1 second segment
size with 80% traffic load, Ti with 100 ms is affected by the
traffic so that the quality is improved. However, considering the
90% and 98% traffic loads, Ti with 1000 ms is also affected by
the congestion. Moreover, the number of quality switches be-
tween representations is reduced when we use BFD as shown
in Figures 26a and 26b. The number of quality switches is the
lowest for the Ti with 100 ms regarding 10-sec and 1 second

17

segment sizes.

7. Discussion

As we indicated in the Related Work section, studies on the
fault tolerance problem in SDN have no specific explanations
about how they create the failure in the network. This is cru-
cial since applying a fault tolerance solution to the physical
devices depends on the initiation of the failure. As shown in
Table 2, the majority of studies in this area utilize Mininet as
the emulation environment. However, as we describe the tech-
nical details in Section 5, causing a link failure in Mininet also
means the destruction of the ports with which the link is as-
sociated. As a result, the switch is informed about the failure
instantly which is not realistic. Therefore, the recovery time of
the system cannot give correct results. For this reason, we use
the Linux bridge in Mininet to initiate the link failure that is
based on the broken link concept. In this case, the correspond-
ing ports are not affected by the failure and continue to work as
expected. Thus, the switch cannot perceive the failure immedi-
ately if an additional protocol is not used. Our results show that
if traditional restoration applications are used in SDN without
an additional protocol like BFD, they are unsuccessful in terms
of recovery time. Since the Linux bridge can be used by any
emulation/simulation environment that works on a Unix based
system, our approach can be easily applied by future studies.
Moreover, since this approach is more realistic, the results ob-
tained by this method can be considered for real system imple-
mentation.

One of the important features of a fault tolerance scheme is
the ability to handle multiple failures in terms of links and nodes
(switches). Since we do not want to disrupt the reader from
the context, we did not include the multiple failure case in this
study. Our observations showed that our fault tolerance pack-
age in SDN has the capability to handle multiple failures. Note
that a node failure can also be considered as a multiple link fail-
ure that is achieved by our schemes. Apart from our context, if
we include the multiple link failure case, its performance eval-
uation may cause redundancy since actually the same action is
performed for both single and multiple failures: finding a new
route from one point to another.

Another aspect of our study is focusing on the quality of al-
ternative paths. In the literature, even though many methods
are used in order to reduce the recovery time and to eliminate
the involvement of the controller, none of them consider the
alternative path quality for fault tolerance in SDN. The qual-
ity of alternative paths is vital, since short recovery time is not
beneficial when the quality of the affected flows decrease. To
demonstrate its importance, we propose the DPQoAP module
and compare the performance of it with the widely used protec-
tion and restoration approaches. Our results validate our propo-
sition showing that QoS and QoE are extremely affected by the
network condition if QoAPs are not considered. Even though
the traditional protection approach provides low recovery time,
the QoS and QoE would be unstable which may also invalidate
SLA requirements of real-time flows. Thus, if our approach can

be deployed in, possible network faults can be recovered with-
out causing service quality losses for real-time applications like
DASH. Also, considering the fact that video traffic is occupying
82% of the overall network traffic, we achieved notable success.

8. Conclusion

In this study, we investigated the fault tolerance in the SDN
data plane considering the network-based parameters including
the recovery time, packet loss, and throughput for QoS, and
application-based parameters including the video quality value
based on SSIM, and buffer level for QoE. Since network-based
parameters for fault tolerance in the SDN data plane were stud-
ied before, we focused on two important issues that were not
examined before. First, we focused on the dynamic protection
considering the quality of alternative paths for network-based
parameters. Even though some studies mentioned the impor-
tance of the QoAPs, there is no study that implements this con-
cept in the literature like our module, DPQoAP. Based on the
results of our experiments, we clearly state that dynamic pro-
tection for fault tolerance is crucial in terms of the recovery
time. Second, we focused on the creation of the failure in a
realistic manner which is not considered in the literature. Stud-
ies using an emulation environment such as Mininet run a spe-
cial command to create link failures which also destroys the
ports of the switches. Therefore, all of the other studies evalu-
ated their results based on the Loss of Signal failure detection
method which generally occurs for the port failures rather than
the link failures. As a more realistic alternative, we used the
Linux bridge, which is placed between the two switches and
completely transparent to the controller, to evaluate a real-world
case and obtain realistic results in Mininet. Our experiments
showed that link failures carried out by the Mininet command
are recovered within milliseconds while link failures created by
shutting down one of the ports of the Linux bridge are recov-
ered in seconds if BFD is not used. However, if BFD is used in
the experiments using the Linux bridge and Mininet, the failure
may be recovered faster based on the message transmit interval
of the BFD protocol.

We also studied the application-based parameters using
DASH for fault tolerance. Since studies that focus on SDN
data plane for fault tolerance considered only the network-
based metrics, this is the first study that investigates how ap-
plication and user experience are affected by the failure and
recovery mechanisms. To explore this, we applied the same
scenarios and modules used for network-based parameters in
a scenario with video streaming clients. To evaluate QoE, we
used the video quality value based on SSIM and the buffer level
in the client. The results of the experiments showed that the
QoE appears to be not affected if the failure is created by the
Mininet command since it is recovered within milliseconds. On
the other hand, if the link failure is created by using the Linux
bridge and BFD is not used, the video and therefore the QoE
is affected for seconds. Moreover, we showed that if DPQoAP
is not used, the recovery time would not be important since the
QoE significantly deteriorates because of the network condi-
tions that affect the selected path.

18

On the other hand, we considered the congestion case apply-
ing the BFD protocol, which is originally designed to detect
failures between network nodes, in order to detect the conges-
tion on the path through which the video flows passing. We in-
vestigated the effect of the video segment size, traffic load, and
BFD intervals on several QoE parameters that reflect the subjec-
tive opinion of the users. We used 1 second and 10 seconds long
segment sizes; 100 ms and 1000 ms BFD intervals; 40 Mbps,
45 Mbps, 49 Mbps traffic loads with the capacity of 50 Mbps.
Our results showed that QoE parameters of the video streaming
with a large segment size is more stable than the small segment
size for the congestion case. On the other hand, since the BFD
interval with 100 ms is more sensitive to the traffic load, it de-
tects congestion earlier than the 1000 ms interval so that the
output of QoE parameters is better than the latter.

In the future, we plan to include the reliability of the links
into the fault tolerance problem. In this way, we believe that a
more robust fault tolerant systems can be designed based on the
probability of the link failures. Moreover, we plan to consider
the number of DASH clients, the quality switch algorithm used
in DASH and the percentage of rerouted flows to investigate
their effect on the QoE parameters in case of congestion.

Acknowledgment

This work is supported by the Turkish Directorate of Strat-
egy and Budget under the TAM Project number 2007K12-873,
and the Galatasaray University Research Foundation under the
Grant No. 18.401.003.

References

van Adrichem, N.L., van Asten, B.J., Kuipers, F.A., 2014. Fast
Recovery in Software-Defined Networks, in: 2014 Third Euro-
pean Workshop on Software Defined Networks, IEEE. pp. 61–
66. URL: http://ieeexplore.ieee.org/document/6984053/,
doi:10.1109/EWSDN.2014.13.

Al-Tam, F., Correia, N., 2019. Fractional switch migration in multi-controller
software-defined networking. Computer Networks 157, 1–10.

Bagci, K.T., Sahin, K.E., Tekalp, A.M., 2017. Compete or collaborate: Archi-
tectures for collaborative dash video over future networks. IEEE Transac-
tions on Multimedia 19, 2152–2165.

Beheshti, N., Zhang, Y., 2012. Fast failover for control traffic in software-
defined networks, in: 2012 IEEE Global Communications Conference
(GLOBECOM), IEEE. pp. 2665–2670.

Bentaleb, A., Begen, A.C., Zimmermann, R., 2016. Sdndash: Improving qoe of
http adaptive streaming using software defined networking, in: Proceedings
of the 2016 ACM on Multimedia Conference, ACM. pp. 1296–1305.

Bentaleb, A., Begen, A.C., Zimmermann, R., Harous, S., 2017. Sdnhas: An
sdn-enabled architecture to optimize qoe in http adaptive streaming. IEEE
Transactions on Multimedia 19, 2136–2151.

Bhatia, J., Dave, R., Bhayani, H., Tanwar, S., Nayyar, A., 2020. Sdn-based real-
time urban traffic analysis in vanet environment. Computer Communications
149, 162–175.

Bhatia, J., Kakadia, P., Bhavsar, M., Tanwar, S., 2019. Sdn-enabled network
coding based secure data dissemination in vanet environment. IEEE Internet
of Things Journal .

Borokhovich, M., Schiff, L., Schmid, S., 2014. Provable data plane connec-
tivity with local fast failover: Introducing openflow graph algorithms, in:
Proceedings of the third workshop on Hot topics in software defined net-
working, ACM. pp. 121–126.

Cascone, C., Sanvito, D., Pollini, L., Capone, A., Sansò, B., 2017. Fast failure
detection and recovery in sdn with stateful data plane. International Journal
of Network Management 27.

Cheng, Z., Zhang, X., Li, Y., Yu, S., Lin, R., He, L., 2017. Congestion-aware lo-
cal reroute for fast failure recovery in software-defined networks. IEEE/OSA
Journal of Optical Communications and Networking 9, 934–944.

Cisco Visual Networking, 2020. The zettabyte era: Trends and analysis.
Cisco white paper Accessed on: April 25, 2020. [Online]. Available:
https://bit.ly/2S6luNL.

Correia, N., Faroq, A.T., 2019. Flow setup aware controller placement in dis-
tributed software-defined networking. IEEE Systems Journal .

dash.js, 2019, . DASH Industry Forum. URL:
http://cdn.dashjs.org/latest/jsdoc/index.
html. accessed at May 29, 2019.

De Oliveira, R.L.S., Shinoda, A.A., Schweitzer, C.M., Prete, L.R., 2014. Us-
ing mininet for emulation and prototyping software-defined networks, in:
Communications and Computing (COLCOM), 2014 IEEE Colombian Con-
ference on, IEEE. pp. 1–6.

Desai, M., Nandagopal, T., 2010. Coping with link failures in centralized con-
trol plane architectures, in: Communication Systems and Networks (COM-
SNETS), 2010 Second International Conference on, IEEE. pp. 1–10.

Floodlight Controller, 2019, . Project Floodlight. URL:
http://www.projectfloodlight.org
/floodlight/. accessed at May 29, 2019.

Georgopoulos, P., Elkhatib, Y., Broadbent, M., Mu, M., Race, N., 2013. To-
wards network-wide qoe fairness using openflow-assisted adaptive video
streaming, in: Proceedings of the 2013 ACM SIGCOMM workshop on Fu-
ture human-centric multimedia networking, ACM. pp. 15–20.

Gozdecki, J., Jajszczyk, A., Stankiewicz, R., 2003. Quality of service termi-
nology in ip networks. IEEE Communications Magazine 41, 153–159.

Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker,
S., 2008. Nox: towards an operating system for networks. ACM SIGCOMM
Computer Communication Review 38, 105–110.

Gyllstrom, D., Braga, N., Kurose, J., 2014. Recovery from link failures in
a smart grid communication network using openflow, in: 2014 IEEE In-
ternational Conference on Smart Grid Communications (SmartGridComm),
IEEE. pp. 254–259.

iPerf, 2019, . iPerf Traffic Generator. URL: https://iperf.fr. accessed at
May 29, 2019.

Katz, D., Ward, D., 2010. Bidirectional Forwarding Detection (BFD).
RFC 5880. URL: https://rfc-editor.org/rfc/rfc5880.txt,
doi:10.17487/RFC5880.

Kempf, J., Bellagamba, E., Kern, A., Jocha, D., Takács, A., Sköldström, P.,
2012. Scalable fault management for openflow, in: Communications (ICC),
2012 IEEE international conference on, IEEE. pp. 6606–6610.

Kim, H., Schlansker, M., Santos, J.R., Tourrilhes, J., Turner, Y., Feamster, N.,
2012. Coronet: Fault tolerance for software defined networks, in: Network
Protocols (ICNP), 2012 20th IEEE International Conference on, IEEE. pp.
1–2.

Kim, S., Son, J., Talukder, A., Hong, C.S., 2016. Congestion prevention mech-
anism based on q-leaning for efficient routing in sdn, in: Information Net-
working (ICOIN), 2016 International Conference on, IEEE. pp. 124–128.

Lee, K., Kim, M., Kim, H., Chwa, H.S., Lee, J., Shin, I., 2019. Fault-
resilient real-time communication using software-defined networking, in:
2019 IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), IEEE. pp. 204–215.

Li, J., Hyun, J., Yoo, J.H., Baik, S., Hong, J.W.K., 2014. Scalable failover
method for data center networks using openflow, in: Network Operations
and Management Symposium (NOMS), 2014 IEEE, IEEE. pp. 1–6.

Lu, Y., Zhu, S., 2015. Sdn-based tcp congestion control in data center networks,
in: Computing and Communications Conference (IPCCC), 2015 IEEE 34th
International Performance, IEEE. pp. 1–7.

Mkwawa, I.H., Barakabitze, A.A., Sun, L., 2016. Video quality management
over the software defined networking, in: Multimedia (ISM), 2016 IEEE
International Symposium on, IEEE. pp. 559–564.

Nasimi, M., Habibi, M.A., Han, B., Schotten, H.D., 2018. Edge-assisted con-
gestion control mechanism for 5g network using software-defined network-
ing, in: 2018 15th International Symposium on Wireless Communication
Systems (ISWCS), IEEE. pp. 1–5.

Nguyen, K., Minh, Q.T., Yamada, S., 2013. A software-defined networking ap-
proach for disaster-resilient wans, in: Computer Communications and Net-

19

works (ICCCN), 2013 22nd International Conference on, IEEE. pp. 1–5.
Open vSwitch, 2019, . Open Virtual Switch. URL:

http://www.openvswitch.org. accessed at May 29, 2019.
Oyman, O., Singh, S., 2012. Quality of experience for http adaptive streaming

services. IEEE Communications Magazine 50.
Petroulakis, N.E., Spanoudakis, G., Askoxylakis, I.G., 2017. Fault tolerance

using an sdn pattern framework, in: GLOBECOM 2017-2017 IEEE Global
Communications Conference, IEEE. pp. 1–6.

Pfeiffenberger, T., Du, J.L., Arruda, P.B., Anzaloni, A., 2015. Reliable and
flexible communications for power systems: Fault-tolerant multicast with
sdn/openflow, in: New Technologies, Mobility and Security (NTMS), 2015
7th International Conference on, IEEE. pp. 1–6.

Ramos, R.M., Martinello, M., Rothenberg, C.E., 2013a. Data center fault-
tolerant routing and forwarding: An approach based on encoded paths, in:
Dependable Computing (LADC), 2013 Sixth Latin-American Symposium
on, IEEE. pp. 104–113.

Ramos, R.M., Martinello, M., Rothenberg, C.E., 2013b. Slickflow: Resilient
source routing in data center networks unlocked by openflow, in: Local
Computer Networks (LCN), 2013 IEEE 38th Conference on, IEEE. pp. 606–
613.

Reitblatt, M., Canini, M., Guha, A., Foster, N., 2013. Fattire: Declarative
fault tolerance for software-defined networks, in: Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking,
ACM. pp. 109–114.

da Rocha Fonseca, P.C., Mota, E.S., 2017. A survey on fault management in
software-defined networks. IEEE Communications Surveys & Tutorials 19,
2284–2321.

Saraswat, S., Agarwal, V., Gupta, H.P., Mishra, R., Gupta, A., Dutta, T., 2019.
Challenges and solutions in software defined networking: A survey. Journal
of Network and Computer Applications 141, 23–58.

Seufert, M., Egger, S., Slanina, M., Zinner, T., Hossfeld, T., Tran-Gia, P., 2015.
A survey on quality of experience of http adaptive streaming. IEEE Com-
munications Surveys & Tutorials 17, 469–492.

Sharma, S., Staessens, D., Colle, D., Pickavet, M., Demeester, P., 2011. En-
abling fast failure recovery in openflow networks, in: Design of Reliable
Communication Networks (DRCN), 2011 8th International Workshop on
the, IEEE. pp. 164–171.

Sharma, S., Staessens, D., Colle, D., Pickavet, M., Demeester, P., 2013a. Fast
failure recovery for in-band openflow networks, in: Design of reliable com-
munication networks (drcn), 2013 9th international conference on the, IEEE.
pp. 52–59.

Sharma, S., Staessens, D., Colle, D., Pickavet, M., Demeester, P., 2013b. Open-
flow: Meeting carrier-grade recovery requirements. Computer Communica-
tions 36, 656–665.

Song, S., Park, H., Choi, B.Y., Choi, T., Zhu, H., 2017. Control path manage-
ment framework for enhancing software-defined network (sdn) reliability.
IEEE Transactions on Network and Service Management 14, 302–316.

Stockhammer, T., 2011. Dynamic adaptive streaming over http–: standards and
design principles, in: Proceedings of the second annual ACM conference on
Multimedia systems, ACM. pp. 133–144.

Tajiki, M.M., Shojafar, M., Akbari, B., Salsano, S., Conti, M., Singhal, M.,
2019. Joint failure recovery, fault prevention, and energy-efficient resource
management for real-time sfc in fog-supported sdn. Computer Networks
162, 106850.

Thorat, P., Raza, S., Kim, D.S., Choo, H., 2017. Rapid recovery from link
failures in software-defined networks. Journal of Communications and Net-
works 19, 648–665.

Van Adrichem, N.L., Van Asten, B.J., Kuipers, F.A., 2014. Fast recovery in
software-defined networks, in: Software Defined Networks (EWSDN), 2014
Third European Workshop on, IEEE. pp. 61–66.

Varis, N., 2012. Anatomy of a linux bridge, in: Proceedings of Seminar on
Network Protocols in Operating Systems, p. 58.

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing 13, 600–612.

Wireshark, 2019, . Wireshark Network Protocol Analyzer. URL:
https://www.wireshark.org. accessed at May 29, 2019.

Yu, Y., Li, X., Leng, X., Song, L., Bu, K., Chen, Y., Yang, J., Zhang, L., Cheng,
K., Xiao, X., 2018. Fault management in software-defined networking: A
survey. IEEE Communications Surveys & Tutorials .

Yuan, B., Jin, H., Zou, D., Yang, L.T., Yu, S., 2018. A practical byzantine-

based approach for faulty switch tolerance in software-defined networks.
IEEE Transactions on Network and Service Management 15, 825–839.

Zabrovskiy, A., Kuzmin, E., Petrov, E., Fomichev, M., 2016. Emulation of
dynamic adaptive streaming over http with mininet, in: Proceedings of the
18th Conference of Open Innovations Association FRUCT, FRUCT Oy. pp.
391–396.

Zhang, Y., Beheshti, N., Tatipamula, M., 2011. On resilience of
split-architecture networks, in: 2011 IEEE Global Telecommunications
Conference-GLOBECOM 2011, IEEE. pp. 1–6.

Zhu, S., Lan, S., 2015. Action based proactive node failure protection mecha-
nism for openflow, in: 2015 IEEE International Conference on Progress in
Informatics and Computing (PIC), IEEE. pp. 65–70.

20

