
Enhancing QoE for Video Streaming Considering
Congestion: A Fault Tolerance Approach

Baris Yamansavascilar
Computer Engineering

Bogazici University
Istanbul, Turkey

baris.yamansavascilar@boun.edu.tr

Ahmet Cihat Baktir
Computer Engineering

Bogazici University
Istanbul, Turkey

cihat.baktir@boun.edu.tr

Atay Ozgovde
Computer Engineering
Galatasaray University

Istanbul, Turkey
aozgovde@gsu.edu.tr

Cem Ersoy
Computer Engineering

Bogazici University
Istanbul, Turkey

ersoy@boun.edu.tr

Abstract—Since tremendous amount of traffic is generated in
modern networks as a result of the mobility and video streaming,
the congestion issue is faced more frequently in the networks.
Accordingly, failures and performance losses in networks due to
congestion result in deteriorated Quality of Experience (QoE)
from the end user perspective that may cause financial and
reputation loss for the service provider. Even though the new
video streaming paradigm, Dynamic Adaptive Streaming over
HTTP (DASH), is proposed as a solution for the changing
condition of the networks, it is not sufficient considering the
heavily loaded links that show the symptoms of link failures.
Therefore, the flexible implementation of the data plane fault
tolerance scheme that can be applied for other problems like
congestion in networks is crucial. Thus, in this study, we apply
the data plane fault tolerance approach in the Software-Defined
Network to improve the QoE of DASH clients in the case of
congestion rather than the failure. To detect the congestion in
the network level, we use the Bidirectional Forwarding Protocol
(BFD) that is originally implemented for link failures. In our
experiments, we investigate the effect of the BFD interval, video
segment size, and traffic load on QoE parameters. Our results
show that if the fault tolerance approach is applied using a small
BFD interval with a large segment size, QoE parameters are
noticeably enhanced considering the non-applied case.

Index Terms—SDN, Fault Tolerance, Dynamic Adaptive
Streaming over HTTP (DASH), Quality of Experience (QoE)

I. INTRODUCTION

Video streaming is the most influential traffic type of the
Internet since it occupies 73% of the overall traffic data volume
[1]. Moreover, it is expected to occupy 82% of all consumer
Internet traffic by 2021 according to the forecast report by
Cisco [2]. Apart from its major role in the traffic composition,
video streaming also forms a separate category with respect
to other applications since it is continuously evaluated by the
end user. This evaluation reflects itself in terms of the Quality
of Experience (QoE) of the user which is essential for the
video service providers since low QoE may result in financial
as well as reputation loss for them.

Currently, Dynamic Adaptive Streaming over HTTP
(DASH) is the widely accepted technology for video stream-
ing. DASH, in accordance with the stateless character of
HTTP, can receive video segments in independent connections,
which in turn allows for versatile and dynamic streaming oper-
ation. This is in contrast with traditional streaming protocols
such as Real-Time Streaming Protocol (RTSP) that work in

a stateful manner by tracking the state of the clients during
the streaming. Thus, DASH features render video streaming
to be carried out in a much more dynamic way so that it
provides many advantages including the adaptation to the
network conditions [3], [4].

Even though the adaptive nature of DASH provides impor-
tant flexibility considering the unstable network conditions,
its capabilities are insufficient to handle the congestion case.
Due to temporary inadequate link capacity, adaptive bitrate
feature of the DASH client would not be sufficient to leverage
the deteriorating QoE after a serious traffic load. Assuming a
continuum of network performance degradation, link failure
can be considered as an extreme case of congestion in which
delay becomes infinity since they show similar symptoms
depending on the severity of the congestion. Bearing with this
view, fault tolerance solutions originally developed for link
failures can, in fact, serve as candidate methods to deal with
congestion when carefully adjusted to this new context.

There are two main approaches for the data plane fault
tolerance considering the link failures: (i) restoration (the reac-
tive approach) and (ii) protection (the proactive approach). In
restoration, the new rules for the affected flows are computed
considering the recent network view, while in protection, the
new rules are predefined in case of a failure. Both approaches
have advantages and disadvantages regarding their applications
on the network [5]. However, considering the congestion
problem, the application of the restoration approach is more
suitable since a predefined number of affected flows are
rerouted rather than all affected flows based on the recent
network condition.

Although it seems promising to mitigate congestion using
fault tolerance methods, sensitivity of the mechanisms for
detecting a data plane fault is also crucial. There are three
essential failure detection methods used in networks including
Loss of Signal (LoS), Link Layer Discovery Protocol (LLDP),
and Bidirectional Forwarding Detection (BFD). Among these
methods, the BFD protocol has superiority since it is designed
only for failure detection and its detection speed outperforms
the others [6], [7]. Thus, its use in a fault tolerant system
provides many benefits for both end users considering QoE
and service providers to meet the expected service quality.

In this study, our main goal is to apply failure detection and



rerouting methods of the data plane fault tolerance scheme
on a congestion case to improve QoE for DASH clients.
We use the Software-Defined Networking (SDN) paradigm
in our network as its central view provides opportunities for
innovative solutions [8]. We investigate the impact of three
parameters including the BFD interval, video segment size,
and traffic load on the QoE. Thus, main contributions of our
study can be summarized as:

1) We detect the congestion in the link layer operating BFD
rather than the application layer metrics that is generally
used by video applications to adapt themselves for new
conditions. Detecting congestion in the network level
allows us to implement a global solution as opposed to
each client adopting themselves in a reactive manner.

2) After its successful detection, we employ the data plane
fault tolerance mechanism to solve the congestion prob-
lem for DASH in SDN. As a result, we apply the same
treatment for a different problem that shows similar
symptoms.

3) We explore the impact of BFD intervals on the QoE
parameters along with video segment size to come up
with a feasible operational range where fault tolerance
approach proves useful for the congestion case.

The rest of this paper is organized as follows. In Section
II, we elaborate the related works including DASH, fault
tolerance, and congestion studies that use SDN as their net-
working paradigm. Section III provides the details of our BFD-
based congestion detection system. Section IV presents our
experimental results. Finally, we conclude our study in Section
V.

II. RELATED WORKS

SDN offers many benefits to address networking challenges
using the OpenFlow protocol [9] that are hard to circumvent
with traditional approaches. Accordingly, recent studies work-
ing on DASH use SDN as the main networking paradigm
in order to exploit the benefits of the centralized controller
and, thus, enhance QoE. Mkwawa et al. [10] proposed a
video quality management scheme that considers the traffic
intensity. They compared the number of stalls of the DASH
video streaming when their proposed scheme is in use and
not. As expected, the number of stalls were fewer when
they used their solution. In [11], Bentaleb et al. focused
on QoE unfairness for multiple clients in the network since
when the number of clients increases, QoE is unfair because
of bandwidth sharing and network resource underutilization.
Afterwards, they improved their scheme in [12], considering
scalability issues of clients, communication overhead, and
client heterogeneity. Likewise, Bagci et al. [13] studied QoE
fairness among clients. They used the network slicing concept
and manipulated TCP windows to prevent QoE fluctuations.

On the other hand, fault tolerance in SDN data plane
has been studied well in the literature. Studies use several
methods to provide the communication after the failures based
on restoration and protection approaches. In the restoration

approach, the common behavior is that studies use the con-
troller for failure notification and then calculate new routes to
maintain communication. Kim et al. [14] proposed an SDN
fault-tolerant system that recovers from multiple link failures
in the data plane. They used VLANs to compute the routing
paths. Li et al. [15] on the other hand developed a restoration
approach by using a local optimal failover method in order to
reduce the path calculation time. Some studies also considered
reliability in this manner. In [16], Yuan et al. designed a system
based on the Byzantine model to tolerate faulty switches
in order to enhance reliability. Moreover, Song et al. [17]
focused on the control-path reliability which is an important
consideration for out-of-band controllers whose network view
can be affected by the data plane failures.

Apart from the restoration approach, some studies used
the protection approach in order to provide fast recovery by
solving the fault tolerance problem in the data plane without
involving the controller. In [18], authors built a system that
permits switches to send faulty link information to only the
relevant switches in order to prevent traffic flood and increase
the network performance in centralized networks. Likewise,
Kempf et al. [19] supported a monitoring function for failure
detection in the data plane without involving the controller.
To this end, they generated monitoring messages within the
source switch and process them in another destination switch.
In [20], Ramos et al. developed a proactive failure recovery
scheme by carrying the information of alternative paths in the
packet headers. Thus, when a link failure happens, their system
uses the alternative path information in order to maintain
communication without consulting the controller. Adrichem
et al. [21] used Bidirectional Forwarding Detection (BFD)
protocol per link to detect failures and then compared the
performance of different BFD detection intervals in terms of
milliseconds.

SDN is also used for the congestion case by several studies.
In [22], authors modified the TCP receive window of ACK
packets at controller in order to avoid the network congestion.
To perform this, they deployed a queue management scheme
in OpenFlow-switch that notifies the controller when the queue
passes the given threshold. Kim et al. [23] on the other hand
considered the dynamic changes in the network traffic and
proposed their reinforcement learning based technique, Q-
learning, for the routing of flows to prevent congestion. Cheng
et al. [24] indicated the shortage of ternary content addressable
memory (TCAM) of OpenFlow switches that cause bottleneck
for scalable flow management. Therefore, they applied flow
aggregation using VLANs to prevent congestion for a failure
recovery case. In [25], authors carried out a congestion control
mechanism in Mobile Edge Computing (MEC) environment
using SDN to considering congestion. They classified the
network traffic as delay tolerant and delay sensitive so that
they buffered the delay tolerant flows in MEC servers during
the peak hours in order to prevent congestion.

To the best of our knowledge, this is the first study that
applies a fault tolerance approach to improve QoE in case a
network-based problem like congestion. Moreover, investigat-



Fig. 1: The design of the BFD-based Congestion Detection
System.

ing the impact of BFD interval on the QoE distinctly separates
this study from existing works.

III. BFD-BASED CONGESTION DETECTION SYSTEM

We designed our system based on the data plane fault toler-
ance mechanism applying the restoration approach rather than
protection. Since video streaming can resist network changes
for seconds due to its buffering mechanism, rerouting flows
based on the recent network view would be beneficial. Similar
to the fault tolerance problem, our BFD-based Congestion
Detection System includes a detection phase and the action
phase. However, since there is no need to reroute all affected
flows in the congestion problem, it is separated from the fault
tolerance. Figure 1 shows the main aspects of our design.

A. Congestion Detection

The first step is the detection of the congestion using the
BFD in the case of a heavy traffic load as shown in Figure
1. BFD is run on the switches to which the observed link is
connected. These two switches are called as a pair regarding
to BFD. Each switch conveys a control packet including the
current state of the monitored link to its pair switch. When a
switch receives the control message from its pair, it sends an
echo message to it with the session status.

The failure detection time, Td, is based on the BFD message
transmit interval, Ti, that can be manually configured by
the network administrator considering the given services. For
example, if real-time applications such as VoIP are widely
used in the network, the interval must be very low considering
the 50ms recovery time [6]. On the other hand, if there is
multimedia traffic like video streaming, the interval may be
in seconds due to the buffer mechanism of the applications.
Thus, Td is computed based on the Ti and the detection time
multiplier M as given in Equation (1). M value is used to
prevent false positives.

Td = (M + 1) ∗ Ti (1)

Fig. 2: Relation between video quality and bitrate for three
different resolutions.

B. Rerouting Flows

After detecting the congestion using BFD, the problem on
the link is reported to the controller via the OpenFlow pro-
tocol. Subsequently, the controller informs the modified fault
tolerance application about the problem. In the application,
flows passing through that link are first extracted from the
flow pool in which all active flows are held. Afterwards, the
predefined percentage of flows are selected for rerouting and
the new rules are created for them. As a result, the congested
link is relieved.

C. DASH Client Module

In our system, each DASH client reports their QoE pa-
rameters including the bitrate, video quality value, latency,
and number of quality switches for the evaluation of the
effect of congestion properly. All these parameters except the
video quality value are extracted from the DASH.js API [26].
However, obtaining the objective video quality value, which is
the most distinctive component of the QoE [4], from the video
streaming is required to create an appropriate formula that
reflects the human subjective measurement. To perform this,
the Structural Similarity Index (SSIM) [27] is widely used.

SSIM is used to measure the similarity between the orig-
inal and transmitted images so that it is possible to assess
the objective image quality and video quality. Since higher
bitrates ensure higher similarity, the essential parameter for the
perceptual quality value is the bitrate of the video streaming.
However, this relationship is not linear as shown in Figure
2 [28]. Therefore, the generalized formula of the perceptual
quality is extracted by applying the curve fitting based on the
bitrate and resolution values given in Table I. The formula is
given in Equation (2) and corresponding coefficients are given
in Table II. In the equation, f(x) represents the video quality,
and x variable denotes the bitrate.

f(x) = axb + c (2)



TABLE I: Bitrates for different screen resolutions

Resolution Bitrate (kbps)
1080p 100, 200, 600, 1000, 2000, 4000, 6000, 8000
720p 100, 200, 400, 600, 800, 1000, 1500, 2000
360p 100, 200, 400, 600, 800, 1000

TABLE II: Coefficients of the generalized video quality func-
tion [28]

Resolution Power Series Model Goodness of Fit
a b c Adjusted R2 RMSE

1080p -3.035 -0.5061 1.022 0.9959 0.006011
720p -4.85 -0.647 1.011 0.9983 0.002923
360p -17.53 -1.048 0.9912 0.9982 0.002097

IV. PERFORMANCE EVALUATION

We investigated three factors in our experiments: the impact
of the BFD interval, the traffic load, and the video segment size
on the QoE parameters. For each experiment, we used Mininet
[29] for SDN emulation deploying Open vSwitch [30] for
switches since it supports both BFD and OpenFlow protocols.
On the other hand, we used DASH.js for the video clients. To
generate additional traffic and thus cause congestion, we run
the iPerf tool [31] on Mininet.

A. The Scenario of Experiments

For each experiment, the topology shown in Figure 3 was
used. We limited the capacity of all links as 50Mbps by
deploying five DASH clients connecting to Switch 1 and
one DASH server attaching to Switch 6. We ensured that all
DASH clients obtain the video segments via the same route as
indicated in Figure 3 as green arrows. On the other hand, four
iPerf clients were connected to Switch 2 to cause congestion
by sending their packets to the iPerf server which is located
at Switch 5. Moreover, Big Buck Bunny short movie, the
duration of which is 10 minutes, is used for streaming the
1080p resolution video. After the streaming was started for
each DASH client, T1, T2, T3, and T4 iPerf clients began to
send their packets at 50th, 80th, and 110th second respectively
to cause congestion. These iPerf clients generated the same
amount of UDP traffic and induced congestion on the link
between Switch 2 and Switch 5.

We took three parameters as the variable in the experiments:
BFD Interval, Traffic Load, and Video Segment Size. We used
1 second and 10 seconds segments to evaluate the effect of
the segment size. To observe the impact of the traffic load, we
generated 40 Mbps (80% Load), 45 Mbps (90% Load), and 49
Mbps (98% Load) traffic using only the iPerf clients. Finally,
to evaluate the influence of the BFD intervals in our system,
we used Ti as 100ms and 1000ms respectively by taking M
value as two. Thus, the Td values were 300ms and 3000ms
respectively. Moreover, we compared these results with the
non-BFD case.

Consequently, we conducted our experiments for 18 differ-
ent cases considering those three parameters. For each case,
we recurred our tests as 6 times. Since each test lasts 10-
11 minutes, the duration of our experiments was 18 hours.

Fig. 3: The topology and video traffic route

To evaluate the results, we analyzed four QoE parameters
including the bitrate, quality value, latency and number of
quality switches from each client and calculated the average
values for each case.

B. The Effect of Segment Size

Our experiments showed that streaming with the big seg-
ment size is more stable than the small segment size consider-
ing the congestion conditions on the link. Experimental results
for 49 Mbps (98% Load) traffic on the congested link given
in Figure 4 represent that fluctuations and change of the QoE
parameters including the average bitrate, video quality, latency,
and number of quality switches between representations are
higher in 1-sec segment size compared with 10-sec segment
size. This pattern is the same for 45 Mbps and 40 Mbps traffic
loads. Since a small segment size needs more HTTP requests
to transmit video segments, it is affected by the network
conditions more than the big segment sizes.

C. The Effect of Traffic Load

To evaluate the impact of the traffic load, we measured the
average video quality of clients based on SSIM and the number
of quality switches including all cases in our experiments. Our
results demonstrated that when the traffic load increases, the
video quality decreases considering both segment sizes with
the non-BFD case as shown in Figure 5a and 5b. For each
traffic load, the video quality with 10-sec segment size is better
than the 1-sec segment size for the non-BFD case due to its
buffer capacity. On the other hand, if we use BFD for the
congestion detection, the video quality is improved.

Considering the non-BFD case for the 80% and 90% traffic
loads, the average video quality with 1-sec segment size is
not so affected while the average video quality with 10-sec
segment size is decreased. However, for the 98% traffic load,
the video quality is poor when we used 1-sec segment size
while it is acceptable for 10-sec segment size.

On the other hand, the effect of the traffic load on the
number of quality switches is shown in Figure 6a and 6b.
The results show that the quality switch count between rep-
resentations for the 10-sec segment size is the lowest for
80% load and highest for the 90% load when the BFD is
not used. This is originated by the fact that 80% load is
not heavy for the 10-sec segment size so that the quality
change is low, while the quality is affected by the 90% load



(a) Average bitrate for 10-sec
segment size

(b) Average video quality for 10-
sec segment size

(c) Average latency for 10-sec
segment size

(d) Average number of quality
switches for 10-sec segment size

(e) Average bitrate for 1-sec seg-
ment size

(f) Average video quality for 1-
sec segment size

(g) Average latency for 1-sec
segment size

(h) Average number of quality
switches for 1-sec segment size

Fig. 4: The change of QoE parameters for congested link with 98% load. The QoE parameters are affected by the congestion
after 150th second. If our scheme is used with BFD mechanism, the QoE parameters are improved for each case.

(a) The impact of the traffic load
on the average video quality us-
ing 10-sec segment size

(b) The impact of the traffic load
on the average video quality us-
ing 1-sec segment size

Fig. 5: The impact of the traffic load on the average video
quality with respect to different segment sizes

that cause quality switches. Moreover, since 98% load is the
most influential for the quality, the quality cannot fluctuate
so that the switch count is not higher than the case of 90%
load. Besides, considering the 1-sec segment size, the count
of switches between representations decrease for higher traffic
loads since they cause worse video quality respectively.

D. The Effect of BFD Intervals

Our results showed that the impact of BFD is crucial in
the case of congestion. In Figure 4, the results show that
using BFD fixes the poor outputs of each QoE parameters
after the 150th second at which the traffic load starts to
influence video streaming. Moreover, it is clearly observable
that Ti with 100ms outperformed Ti with 1000ms regarding
QoE parameters since its sensitivity is more delicate so that it

(a) The impact of the traffic load
on the average quality switch
count using 10-sec segment size

(b) The impact of the traffic load
on the average quality switch
count using 1-sec segment size

Fig. 6: The impact of the traffic load on the quality switch
count with respect to different segment sizes.

detects the congestion earlier. Apart from the 49 Mbps shown
in Figure 4, this pattern is also the same for other traffic loads
including 45 Mbps (90% load) and 40 Mbps (80% load).

On the other hand, the BFD effect is also noticeable in
Figure 5a and 5b considering the video quality based on
traffic load. For 10-sec segment size with 80% traffic load,
the effect of BFD interval is limited since the traffic could
not cause congestion that induces to prevent BFD control
packets considering their message interval, Ti. However, for
1-sec segment size with 80% traffic load, Ti with 100ms is
affected by the traffic so that the quality is improved. However,
considering the 90% and 98% traffic loads, Ti with 1000ms
is also affected by the congestion. Moreover, the number of
quality switches between representations is reduced when we



use BFD as shown in Figure 6a and 6b. The number of quality
switches is the lowest for the Ti with 100ms regarding 10-sec
and 1-sec segment sizes.

V. CONCLUSION

In this study, we applied the data plane fault tolerance
approach, restoration, in the SDN to improve the QoE of
DASH clients. On the other hand, we used the BFD protocol,
which is originally designed to detect failures between network
nodes, to detect congestion on the path through which the
video flows passing. We investigated the effect of the video
segment size, traffic load, and BFD intervals on several QoE
parameters that reflect the subjective opinion of the users.
We used 1 second and 10 seconds segment sizes; 100ms and
1000ms BFD intervals; 40 Mbps, 45 Mbps, 49 Mbps traffic
loads with the capacity of 50Mbps. Our results showed that
video streaming with a large segment size is more stable than
the small segment size for the congestion case. On the other
hand, since the BFD interval with 100ms is more sensitive to
the traffic load, it detects congestion earlier than the 1000ms
interval so that the output of QoE parameters is better than
the latter.

For the future work, we plan to consider the number of
DASH clients, quality switch algorithm used in DASH and
the percentage of rerouted flows to investigate their effect on
QoE parameters in case of congestion.

ACKNOWLEDGMENT

This work is supported by the State Planning Organi-
zation of Turkey, under the TAM project with the Grant
No. 2007K120610. and the Galatasaray University Research
Foundation under the Grant No. 18.401.003

REFERENCES

[1] C. V. N. Index, “The zettabyte era: Trends and analysis,” Cisco
white paper, 2017, accessed on: June 20, 2018. [Online]. Available:
https://bit.ly/2uBPyaa.

[2] ——, “Cisco visual networking index: Forecast and methodology 2016-
2021,” White paper, CISCO, 2017.

[3] T. Stockhammer, “Dynamic adaptive streaming over http–: standards and
design principles,” in Proceedings of the second annual ACM conference
on Multimedia systems. ACM, 2011, pp. 133–144.

[4] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-Gia,
“A survey on quality of experience of http adaptive streaming,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2015.

[5] P. Fonseca and E. Mota, “A survey on fault management in software-
defined networks,” IEEE Communications Surveys & Tutorials, 2017.

[6] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Openflow: Meeting carrier-grade recovery requirements,” Computer
Communications, vol. 36, no. 6, pp. 656–665, 2013.

[7] N. L. van Adrichem, B. J. van Asten, and F. A. Kuipers, “Fast
Recovery in Software-Defined Networks,” in 2014 Third European
Workshop on Software Defined Networks. IEEE, sep 2014, pp. 61–66.
[Online]. Available: http://ieeexplore.ieee.org/document/6984053/

[8] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[10] I.-H. Mkwawa, A. A. Barakabitze, and L. Sun, “Video quality manage-
ment over the software defined networking,” in Multimedia (ISM), 2016
IEEE International Symposium on. IEEE, 2016, pp. 559–564.

[11] A. Bentaleb, A. C. Begen, and R. Zimmermann, “Sdndash: Improving
qoe of http adaptive streaming using software defined networking,” in
Proceedings of the 2016 ACM on Multimedia Conference. ACM, 2016,
pp. 1296–1305.

[12] A. Bentaleb, A. C. Begen, R. Zimmermann, and S. Harous, “Sdnhas:
An sdn-enabled architecture to optimize qoe in http adaptive streaming,”
IEEE Transactions on Multimedia, vol. 19, no. 10, pp. 2136–2151, 2017.

[13] K. T. Bagci, K. E. Sahin, and A. M. Tekalp, “Compete or collaborate:
Architectures for collaborative dash video over future networks,” IEEE
Transactions on Multimedia, vol. 19, no. 10, pp. 2152–2165, 2017.

[14] H. Kim, M. Schlansker, J. R. Santos, J. Tourrilhes, Y. Turner, and
N. Feamster, “Coronet: Fault tolerance for software defined networks,”
in Network Protocols (ICNP), 2012 20th IEEE International Conference
on. IEEE, 2012, pp. 1–2.

[15] J. Li, J. Hyun, J.-H. Yoo, S. Baik, and J. W.-K. Hong, “Scalable failover
method for data center networks using openflow,” in Network Operations
and Management Symposium (NOMS), 2014 IEEE. IEEE, 2014, pp.
1–6.

[16] B. Yuan, H. Jin, D. Zou, L. T. Yang, and S. Yu, “A practical
byzantine-based approach for faulty switch tolerance in software-defined
networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 2, pp. 825–839, 2018.

[17] S. Song, H. Park, B.-Y. Choi, T. Choi, and H. Zhu, “Control path
management framework for enhancing software-defined network (sdn)
reliability,” IEEE Transactions on Network and Service Management,
vol. 14, no. 2, pp. 302–316, 2017.

[18] M. Desai and T. Nandagopal, “Coping with link failures in centralized
control plane architectures,” in Communication Systems and Networks
(COMSNETS), 2010 Second International Conference on. IEEE, 2010,
pp. 1–10.

[19] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takács, and
P. Sköldström, “Scalable fault management for openflow,” in Commu-
nications (ICC), 2012 IEEE international conference on. IEEE, 2012,
pp. 6606–6610.

[20] R. M. Ramos, M. Martinello, and C. E. Rothenberg, “Slickflow: Resilient
source routing in data center networks unlocked by openflow,” in Local
Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE,
2013, pp. 606–613.

[21] N. L. Van Adrichem, B. J. Van Asten, and F. A. Kuipers, “Fast recovery
in software-defined networks,” in Software Defined Networks (EWSDN),
2014 Third European Workshop on. IEEE, 2014, pp. 61–66.

[22] Y. Lu and S. Zhu, “Sdn-based tcp congestion control in data center
networks,” in Computing and Communications Conference (IPCCC),
2015 IEEE 34th International Performance. IEEE, 2015, pp. 1–7.

[23] S. Kim, J. Son, A. Talukder, and C. S. Hong, “Congestion prevention
mechanism based on q-leaning for efficient routing in sdn,” in Informa-
tion Networking (ICOIN), 2016 International Conference on. IEEE,
2016, pp. 124–128.

[24] Z. Cheng, X. Zhang, Y. Li, S. Yu, R. Lin, and L. He, “Congestion-aware
local reroute for fast failure recovery in software-defined networks,”
IEEE/OSA Journal of Optical Communications and Networking, vol. 9,
no. 11, pp. 934–944, 2017.

[25] M. Nasimi, M. A. Habibi, B. Han, and H. D. Schotten, “Edge-assisted
congestion control mechanism for 5g network using software-defined
networking,” in 2018 15th International Symposium on Wireless Com-
munication Systems (ISWCS). IEEE, 2018, pp. 1–5.

[26] “Dash.js,” accessed on: December 9, 2018. [Online]. Available:
http://cdn.dashjs.org/latest/jsdoc/index.html.

[27] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[28] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race,
“Towards network-wide qoe fairness using openflow-assisted adaptive
video streaming,” in Proceedings of the 2013 ACM SIGCOMM workshop
on Future human-centric multimedia networking. ACM, 2013, pp. 15–
20.

[29] R. L. S. De Oliveira, A. A. Shinoda, C. M. Schweitzer, and L. R.
Prete, “Using mininet for emulation and prototyping software-defined
networks,” in Communications and Computing (COLCOM), 2014 IEEE
Colombian Conference on. IEEE, 2014, pp. 1–6.

[30] “Open vswitch,” accessed on: December 16, 2018. [Online]. Available:
http://www.openvswitch.org.

[31] “iperf,” accessed on: December 9, 2018. [Online]. Available:
https://iperf.fr.


