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Abstract— Great hardware and software capabilities of mobile 
devices allow us to research new scientific fields. Activity 
recognition is one of the main research areas for smartphones. 
Built-in sensors of a standard smartphone, such as accelerometer, 
magnetometer, gyroscope, enable us to recognize the daily activities 
of a person. In this study, we focused on the window sizes and the 
sampling rates in order to observe how they affect to the accuracy 
and CPU utilization. For our test scenarios, we built a dataset 
including a tri-axial accelerometer sensor data of 7 daily activities: 
walking, jogging, sitting, lying, standing, walking upstairs and 
walking downstairs. We collected these activities with a sampling 
rate of 80 Hz by using 5 seconds window size. Then, we 
downsampled the collected data to 40 Hz, 20 Hz, 10 Hz, 5 Hz and 1 
Hz by using 4, 3, 2, and 1 seconds window sizes, respectively. Thus, 
we could evaluate the variation of the accuracy and CPU 
utilization. Our test results showed that when the sampling rate 
increases, both the accuracy and the CPU utilization become 
greater.  Moreover, we observed that, for a fixed sampling rate, 
when window size increases, CPU utilization decreases.  

Keywords— Activity Recognition, Sampling Rate, Window Size,  
CPU utilization, Classification Accuracy, Smartphone, iOS  

I.  INTRODUCTION  
In recent years, smart mobile devices have entered into every 

part of our lives and they have changed our life styles. Their great 
hardware and software capabilities have facilitated our lives with 
various ways such as sending e-mail, browsing on the Internet, 
reading books and magazines, playing games etc. Especially, 
after the announcement of the original iPhone in 2007, the usage 
rate of the smartphones has accelerated. This acceleration has 
changed computer industry and routines of people. One of the 
most important differences between smartphones and desktop-
notebook computers is the sensing capability, which turns the 
mobile phones into a great assistant of a person. With the help of 
the sensors, smartphones ease our lives in many ways such as 
health assistance, detecting falls, prolonging the battery life, 
finding a location, protecting our privacy. Recently, researchers 
have focused on mobile applications especially exploiting sensor 
data. Thus, activity recognition systems have become popular for 
the last 5 years. Most of researchers use accelerometer, 

magnetometer and/or gyroscope sensors of the smartphone to 
recognize daily activities of a person.  

Activity recognition systems aim at recognizing daily 
movements of people and reporting them. Generally, these 
systems are designed to make people be aware of their health and 
fitness performance. For example, obese people care about their 
daily movements and calorie consumption. Besides, exercises are 
important for both elderly people and athletes to maintain their 
body health. Researchers take the outputs of the activity 
recognition system and create several reports to inform the user.  

Before the spread of smartphones, activity recognition 
systems were implemented by using wearable sensors that were 
placed on human body [1]. These wearable sensors might have 
one or two-dimensional accelerometer in contrast to 
smartphones, which usually have 3-dimensional accelerometer. 
Moreover, mobility and simple usability of smartphones have 
encouraged researchers to exploit the smartphones for activity 
recognition. Nowadays, most of the activity recognition systems 
are implemented on smartphones or other smart mobile devices 
such as fitness bands and watches. Thus, in this study, we 
implemented a mobile application on a smartphone, iPhone 4, for 
our test scenarios. Moreover, we validated our test results using 
an iPod Touch 6th Generation. 

One of the main problems of smartphones is the battery life. 
Even though most manufacturers have focused on this problem, 
battery of the smartphones still runs out usually within 1 - 1.5 
days regarding a standard usage. Especially, battery life is more 
important for sensor applications such as activity recognition, fall 
detection and sleep analysis. Since these applications frequently 
read data from built-in sensors within milliseconds, they use CPU 
much more than other applications. Regarding to this fact, we 
make the following contributions: (1) observation of the 
influence of window sizes to the CPU utilization; (2) 
determination of the effective window sizes and sampling rates 
by taking into consideration both the CPU utilization and the 
accuracy. Thus, it will lead us to infer the relation between 
sampling rate, window size, CPU utilization and accuracy. In this 
study, since the results of CPU utilization could be generalized 
for different kind of mobile phones more accurately, we used 



these results rather than the power consumption which depends 
much more on the manufacturer, memory unit, operating system, 
sensors, disk I/O etc. 

For our test scenarios, we implemented a mobile application 
for activity recognition in order to collect data of daily activities. 
In addition to our application, we exploit a module, which logs 
the CPU utilization in order to evaluate the influence of the 
window sizes and sampling rates. Our mobile application is 
designed also to calculate calorie consumption of the user 
depending on his/her activities. We used Metabolic Equivalents 
(MET) [18] to calculate calorie consumption.  

The rest of the paper is organized as follows. In Section II, we 
introduce related studies and their methods. In Section III, we 
describe the design of our activity recognition system. In Section 
4, experimental results are discussed in detail. Finally, we 
conclude the paper in Section 5.   

II. RELATED WORKS 
Activity recognition based on accelerometer data has taken 

much attention in the past decade. One of the earliest studies in 
this topic was performed by Bao & Intille [1]. They placed 
wearable biaxial accelerometers on five different part of human 
body. In their study, 20 daily activities were studied by using 
76.25 Hz sampling rate and each window represented as 6.7 
seconds. Also, decision tree classifiers showed the best 
performance. In [2], Abdullah et al. discussed classification 
algorithms and evaluation methods of smartphone-based human 
activity recognition. They stated that the selection of 
classification algorithm is based on the capability of the 
processing platform to execute the algorithm. In addition, they 
grouped all features used by researchers into four categories as 
magnitude-based, frequency-based, correlation and others. In [9], 
Kwapisz et al. implemented a mobile application on Android. 
Their study is one of the earliest studies that used a commercial 
mass-marketed device rather than a research-only device. They 
studied six daily activities of twenty-nine users. Also, they used 
ten-fold cross validation by using 10-seconds interval and 20Hz 
sampling rate. In [10], Anjum & Ilyas built a smartphone 
application which tracks users’ activities and reports estimates of 
the burned calories. C4.5 classification algorithm was the most 
successful algorithm with 95.2% of accuracy. In this study, MET 
was used to compute calorie consumption as we used in our 
application. On the other hand, some studies [11,12,13,14] 
focused on the position and orientation of the smartphone. They 
proposed orientation and position independent methods for 
activity recognition. Moreover, some studies [26, 27] worked on 
fall detection, which is a part of activity recognition. 

Some works studied both on complex and simple activities. In 
[3], Dernbach et al. divided activities into two categories as 
simple and complex. While complex activities were defined as 
cleaning, cooking, medication, sweeping, washing hands and 
watering plants, basic activities were defined as biking, climbing 
stairs, driving, lying, running, sitting, standing and walking. They 
used fastest threshold mode of the smartphone to collect data. 

Also, six classifiers were tested on Weka [20] including Multi-
layer Perceptron, Naïve Bayes, Bayesian network, Decision 
Table, Best-First Tree, and K-star. Accuracy of algorithms was 
over 90% for basic activities while 50% for complex ones. In [4], 
Do et al. aimed to maintain body health of the user. They studied 
on basic and complex activities. Tri-axial accelerometer of the 
smartphone was exploited by using 5Hz-sampling rate. In their 
study, activity recognition process was carried out on a web 
server. In [5], Rai et al. evaluated an unsupervised clustering 
based approach to perform complex activity recognition. In their 
study, users were permitted to tag their activities with no 
restriction.  

There are also different studies. In [6], Kwapisz et al. 
identify/authenticate the user of smartphone by using his/her 
physical activities. They collected accelerometer data from 36 
users and used 10 seconds interval with 20 Hz sampling rate. In 
[7], Weiss & Lockhart extended the aforementioned study [6] 
and they used identification of user to recognize user 
characteristics. In [8], Kim et al. aim at detecting the early 
symptoms of dementia. They compared current and stored 
activity patterns of the user to infer dementia by using activity 
pattern matching. They placed wearable tri-axial accelerometers 
on six different part of human body.  

In literature, to the best of our knowledge, there are no studies 
that investigate the accuracy, CPU utilization, sampling rate and 
window size together. Available studies examined only two or 
three of these factors. In [15], Lau & David investigated which 
sampling rate and window size combination of feature extraction 
will provide better activity recognition using smartphones. They 
used Nokia N95 as smartphone. Test results showed that 
sampling rate of 10 Hz and 20 Hz is sufficient to achieve good 
accuracy. Also, the combination of sampling rates with window 
sizes of 2 and 4 seconds gave higher accuracies than smaller 
window sizes. In [16], Anguita et al. proposed a novel hardware-
friendly approach, since mobile phones are limited in terms of 
energy and computing power. Their new method adapted 
standard SVM and they used integer parameters to reduce 
computational cost. In their study, while accuracy of standard 
SVM is 89.3%, their new SVM model achieved 89% of 
accuracy. In [17], Yan et al. investigated how the sampling 
frequency and classification affect each activity separately. They 
focused on two independent parameters: the sensor sampling 
frequency and the set of features. To reduce energy overheads, 
they studied the combined influence of these two parameters on 
the accuracy, separately for each activity. They achieved 50% of 
energy saving under ideal conditions. On the other hand, energy 
saving on the phone was between 20-25%. In [18], Viet et al. 
proposed an adaptive energy saving strategy choosing 
appropriate sampling frequency & classification features for each 
activity, similarly to [17]. They contributed a novel method for 
feature extraction and used SVM as classifier. They achieved 
28% of energy saving on mobile phone. 

Our study differs from existing works in the following ways. 



• We observed the influence of window sizes to the CPU 
utilization while other studies measured the power 
consumption by considering only the effect of sampling 
rates or features. 

• We investigated the effective window sizes and sampling 
rates by analyzing the results of both CPU utilization and 
the accuracy whereas other studies examined only two or 
three of these factors. 

III. SYSTEM DESIGN 
In this study, we evaluated the effect of different sampling 

rates and window sizes on the accuracy and CPU utilization. To 
perform this purpose, we first implemented an activity 
recognition system on a smartphone properly. Thus, we followed 
the classical aspects given in Fig. 1. 

 

Fig. 1. Activity Recognition Task [16] 

Training phase is a necessary step for an activity recognition 
system that uses supervised learning methods. For this purpose, 
we developed a module in our mobile application to collect raw 
sensor data and then labeled them. With the help of this module, 
accelerometer data could be collected and saved into mobile 
phone’s file system. After obtaining raw data with a sampling 
rate of 80 Hz by using 5 seconds window size, the data was 
downsampled to create new datasets of 40 Hz, 20 Hz, 10 Hz, 5 
Hz and 1 Hz. We recurred this data-preprocessing step four times 
to evaluate window sizes of 4 seconds, 3 seconds, 2 seconds, and 
1 second. Thus, we achieved the data set that was used for 
accuracy measurements. The numbers of instances in the dataset 
based on the window sizes are given in Table 1. Afterwards, 
features were extracted according to the sampling rates and 
window sizes, separately. Finally, these feature-vector sets were 
given to the Weka tool [20] for the evaluation of classification 
algorithms.  

After the evaluation of the accuracy, CPU utilization was 
examined by using the accuracy results, window sizes and 
sampling rates. For this purpose, we modified our earlier module 
to save the CPU utilization ratios by considering each <Window 
Size, Sampling Rate> tuple. To interpret the output, we exploited 
the Instruments tool.  

In the following subsections, we explain the data collection 
and feature extraction in detail. 

A. Data Collection 
In this study, we considered 7 main activities for the activity 

recognition. These activities include walking, jogging, sitting, 

lying, standing, walking upstairs and walking downstairs. Three 
volunteers with different physical characteristics (1 overweight 
person, 1 tall person and 1 short person) helped us to collect data 
for each activity. During data collection, these three subjects 
carried the smartphone in the front pocket of their trousers at 
vertical position. Each subject performed each activity - except 
walking upstairs/downstairs - for two minutes. 

Figure 2 shows the two screenshots of the training phase 
module. In this module, subjects first select the current activity 
they perform and enter their name. Afterwards, subjects hit the 
start button and record raw sensor data of their current activity. 
Labeling is performed automatically by using the information of 
the selected activity. 

 

 

Fig. 2. User Interfaces For Collecting Raw Data 

After recording raw data, we run the same module to save the 
CPU utilization ratios. As we want to evaluate the result of each 
<Window Size, Sampling Rate> tuple, we modified the module 
for each experiment. Since iOS operating system allows 
developers to log hardware usage rates automatically, we did not 
use any special methods. 

B. Feature Extraction 
Raw time-series accelerometer data cannot be given into 

standard classification algorithms [9]. It first must be processed 
and transformed into instances. To achieve this, we divided our 
labeled raw data into 4 seconds, 3 seconds, 2 seconds, and 1-
second samples (windows).  Afterwards, 61 time-domain features 
were calculated for each instance in the dataset using statistical 
methods.  

IV. EXPERIMENTAL RESULTS 
In this study, we performed our experiments on Weka and 

Instruments, which is a performance-analysis and testing tool for 
dynamically tracing and profiling OS X and iOS code [24]. In 



Instruments, Energy Diagnostic instrument was used to observe 
CPU utilization [25]. We evaluated six different classification 
algorithms including J48 (C4.5), k-Star, Naive Bayes, Bayes Net, 
Random Forest, and k-NN. We applied 10-fold cross validation 
method in all test operations. 

TABLE I.  THE NUMBERS OF INSTANCES FOR EACH WINDOW SIZE 

 Window Size (Seconds) 

Activity 1  2  3  4 5  

Walking 535 267 177 133 107 

Jogging 510 254 169 126 102 

Sitting 520 259 172 128 104 

Lying 550 275 183 137 110 

Standing 530 264 175 131 106 

W. Upstairs 120 60 39 29 24 

W. Downstairs 95 47 31 23 19 

 

To evaluate CPU utilization on the Instruments by 
considering <Window Size, Sampling Rate> tuple, we run our 
module on iPhone 4 operating by Apple A4 processor. Apple A4 
processor is based on the ARM processor architecture [21]. It 
combines an ARM Cortex-A8 CPU with a PowerVR GPU [22, 
23]. Its maximum CPU clock rate is 800Mhz on iPhone 4. After 
we achieved our test results, we validated them using an iPod 
Touch 6th Generation. 

A. Effects of the Sampling Rate and Window Size on Accuracy 
To evaluate the effects of the sampling rates and window 

sizes on accuracy, we assessed the results of six classification 
algorithms shown in Table 2. In this Table, we divided the results 
in sections by using the sampling rates. Each group of the same 
sampling rate indicates a section. In each section, we underlined 
the best result for each algorithm. Moreover, we colored the best 
results (by considering all sections) for each algorithm as red. 
Analyzing the results considering the sampling rates show us that 
higher rates provide better accuracy. However, some exceptions 
have been occurred. For example, the accuracy of J48 for <4, 40> 
is higher than <4,80> whereas we expect the against.  

Table 2 helps us to make the following inferences about 
window sizes. First, we observed that best results were achieved 
with the window sizes in the range of 3 and 5 seconds. Second, 
we noticed that generally when the sampling rate decreases, 
bigger window sizes give better accuracy. 

The results of J48 algorithm are illustrated in Figure 3 in 
order to show the relationship between sampling rate, window 
size and accuracy more clearly. 

 

TABLE II.  ACCURACY OF ALGORITHMS BASED ON WINDOW SIZES AND 
SAMPLING RATES 

WS 
(Sec) 

SR 
(Hz) J48 RF k-Star Naive 

Bayes 
Bayes 
Net k-NN 

1  80  93.99% 94.65% 94.90% 87.62% 93.39% 94.16% 

2  80 95.16% 95.93% 92.85% 88.08% 93.83% 94.53% 

3  80 94.93% 96.19% 96.09% 89.32% 94.08% 95.88% 

4  80 94.91% 96.18% 93.21% 88.97% 94.06% 95.47% 

5  80 95.98% 96.68% 95.80% 89.16% 93.88% 93.71% 

1  40 93.43% 95.24% 94.83% 87.13% 93.18% 93.95% 

2  40 94.74% 95.51% 94.53% 87.03% 93.48% 94.88% 

3  40 95.45% 95.77% 95.24% 89.22% 94.39% 94.82% 

4  40 96.04% 96.04% 95.05% 88.40% 93.35% 94.63% 

5  40 94.93% 96.33% 95.28% 88.46% 93.53% 95.45% 

1  20 92.66% 94.58% 93.88% 83.85% 92.45% 92.62% 

2  20 93.97% 94.53% 93.55% 84.43% 93.41% 92.99% 

3  20 94.19% 95.03% 95.45% 86.26% 92.81% 94.08% 

4  20 95.62% 95.90% 94.77% 86.14% 92.93% 93.92% 

5  20 94.23% 94.93% 94.41% 87.76% 92.83% 94.23% 

1  10 90.59% 92.69% 91.19% 80.04% 90.31% 90.31% 

2  10 92.57% 93.48% 92.77% 81.77% 91.58% 92.36% 

3  10 93.02% 93.55% 93.66% 82.98% 91.54% 91.86% 

4  10 92.08% 94.20% 94.34% 84.16% 92.22% 93.21% 

5  10 92.48% 94.41% 92.66% 84.79% 91.96% 90.56% 

1  5 88.60% 91.15% 88.53% 75.66% 87.52% 86.96% 

2  5 89.69% 92.36% 90.46% 78.40% 91.10% 90.11% 

3  5 90.38% 92.81% 91.75% 80.44% 90.17% 89.96% 

4  5 90.66% 93.91% 92.65% 81.47% 90.81% 89.96% 

5  5 91.61% 94.76% 92.31% 83.22% 91.78% 91.43% 

1  1 80.00% 82.76% 77.62% 63.60% 79.72% 79.55% 

2  1 81.07% 85.34% 75.60% 71.46% 83.59% 74.82% 

3  1 82.56% 88.05% 81.50% 74.95% 83.62% 80.66% 

4  1 84.87% 87.41% 81.61% 76.66% 84.44% 81.05% 

5  1 79.72% 86.54% 83.39% 77.10% 84.62% 81.64% 

 

B. Effects of the Sampling Rate and Window Size on CPU 
Utilization 
We organized CPU utilization records for each <Window 

Size, Sampling Rate> tuple into the line-based charts in order to 
evaluate the results more accurately. Fig. 4 and Fig. 5 show these 



results based on the window sizes and sampling rates, 
respectively. For varying window sizes, we observed that CPU 
utilization decreases when window size increases. However, after 
the window size of 3 seconds, the deceleration of the CPU 
utilization is considerably low. Thus, it can be negligible. Since 
the highest accuracy for each classification algorithm is obtained 
between 3 and 5 seconds window sizes, this observation is quite 
important. 

 

Fig. 3. The relationship between sampling rate (in Hz), window size (in 
seconds) and accuracy (in %) for the results of J48 

Evaluating both sampling rate and window size shows us that 
the influence of the sampling rate on CPU utilization is bigger 
than the window size. For each transition from lower sampling 
rate to higher sampling rate, CPU utilization increases with a 
growing acceleration as given in Table 3.  Note that, the 
transition between 1 Hz and 5 Hz is five times, whereas other 
transitions are two times.  

C. Efficient Sampling Rates and Window Sizes 
To determine efficient sampling rates and window sizes, we 

considered both CPU utilization and accuracy results. We must 
ensure the maximum benefit from accuracy and the minimum 
loss from CPU utilization. Thus, we carried out our assessments 
according to this purpose. 

In our assessments, we first focused on window sizes. From 
the view of accuracy aspect, classification algorithms reached 
their peak when we have used the window sizes in the range of 3 
and 5 seconds. Besides, we observed that generally when 
sampling rate decreases, bigger window sizes give better 
accuracy. From the view of CPU utilization aspect, when the 
window size increases, the CPU utilization decreases. However, 
especially after the window size of 3 seconds, this deceleration is 
considerably low. Thus, we can say that it can be ignorable. 
Finally, since CPU utilization and accuracy results indicate the 
same range, we concluded that the efficient window size is in the 
range of 3 and 5 seconds. 

TABLE III.  ACCELERATION VALUES OF EACH TRANSITION BETWEEN 
SAMPLING RATES FOR CPU UTILIZATION 

 Window Size 

Transition 1 sec 2 sec 3 sec 4 sec 5 sec 

1 Hz – 5 Hz 2.14 2.06 2.10 2.31 2.24 

5 Hz – 10 Hz 1.41 1.41 1.59 1.47 1.61 

10 Hz – 20 Hz 1.48 1.62 1.63 1.70 1.70 

20 Hz – 40 Hz 1.60 1.62 1.68 1.83 1.81 

40 Hz – 80 Hz 1.66 1.80 1.78 1.79 1.82 

 

 

Fig. 4. CPU utilization based on window size 

 

Fig. 5. CPU utilization based on sampling rate 

According to our results, the influence of the sampling rates is 
much more than the effect of the window sizes. We observed that 
the CPU utilization increases with a growing acceleration when 
the sampling rate rises. Based on this outcome, we can say that 
the CPU utilization is inadequate to find the efficient range for 
sampling rate. Thus, we should consider both accuracy and CPU 
utilization together in order to make a conclusion about the 
efficient sampling rates. In our accuracy results, in most cases, 
we noticed that the sampling rate of 5 Hz is sufficient for a good 
accuracy (>90%). Likewise, for high accuracy (>95%), the 



sampling rate of 20 Hz is sufficient in most cases. If we consider 
the fact that the CPU utilization increases for higher values of the 
sampling rates, there should be a balance between them. 
However, since each algorithm have different characteristic, the 
optimum sampling rate (the balance) varies. Thus, we concluded 
that the efficient sampling rate is in the range of 5 Hz and 20 Hz. 

V. CONCLUSION 
In this study, we investigated the efficient sampling rates and 

window sizes for activity recognition on smartphones. Activity 
recognition is a multi-objective optimization problem. To 
simplify this problem we preferred to give our results within 
ranges instead of indicating an optimal point. For sampling rates, 
we concluded that the sampling rate in the range of 5 Hz and 20 
Hz is the efficient in most cases considering both accuracy and 
CPU utilization. Likewise, for window sizes, we observed that 
the efficient size is in the range of 3 and 5 seconds. Moreover, for 
each <Window Size, Sampling Rate> tuple, Random Forest 
algorithm gave the best accuracy. 

In the activity recognition area, effective sampling rates and 
power consumption were deeply investigated issues. However, 
since studies that investigated the influence of window sizes on 
both CPU utilization and accuracy are quite few, we focused on 
them in this study. Moreover, to the best of our knowledge, there 
are no studies that investigate the accuracy, CPU utilization, 
sampling rate and window size together. Consequently, we 
believe that our study will lead future researches in this topic. 
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